| 1 | /*
 | 
| 2 |  * Souffle - A Datalog Compiler
 | 
| 3 |  * Copyright (c) 2021, The Souffle Developers. All rights reserved
 | 
| 4 |  * Licensed under the Universal Permissive License v 1.0 as shown at:
 | 
| 5 |  * - https://opensource.org/licenses/UPL
 | 
| 6 |  * - <souffle root>/licenses/SOUFFLE-UPL.txt
 | 
| 7 |  */
 | 
| 8 | #pragma once
 | 
| 9 | 
 | 
| 10 | #include "souffle/utility/ParallelUtil.h"
 | 
| 11 | 
 | 
| 12 | #include <array>
 | 
| 13 | #include <atomic>
 | 
| 14 | #include <cassert>
 | 
| 15 | #include <cmath>
 | 
| 16 | #include <memory>
 | 
| 17 | #include <mutex>
 | 
| 18 | #include <vector>
 | 
| 19 | 
 | 
| 20 | namespace souffle {
 | 
| 21 | namespace details {
 | 
| 22 | 
 | 
| 23 | static const std::vector<std::pair<unsigned, unsigned>> ToPrime = {
 | 
| 24 |         // https://primes.utm.edu/lists/2small/0bit.html
 | 
| 25 |         // ((2^n) - k) is prime
 | 
| 26 |         // {n, k}
 | 
| 27 |         {4, 3},  // 2^4 - 3 = 13
 | 
| 28 |         {8, 5},  // 8^5 - 5 = 251
 | 
| 29 |         {9, 3}, {10, 3}, {11, 9}, {12, 3}, {13, 1}, {14, 3}, {15, 19}, {16, 15}, {17, 1}, {18, 5}, {19, 1},
 | 
| 30 |         {20, 3}, {21, 9}, {22, 3}, {23, 15}, {24, 3}, {25, 39}, {26, 5}, {27, 39}, {28, 57}, {29, 3},
 | 
| 31 |         {30, 35}, {31, 1}, {32, 5}, {33, 9}, {34, 41}, {35, 31}, {36, 5}, {37, 25}, {38, 45}, {39, 7},
 | 
| 32 |         {40, 87}, {41, 21}, {42, 11}, {43, 57}, {44, 17}, {45, 55}, {46, 21}, {47, 115}, {48, 59}, {49, 81},
 | 
| 33 |         {50, 27}, {51, 129}, {52, 47}, {53, 111}, {54, 33}, {55, 55}, {56, 5}, {57, 13}, {58, 27}, {59, 55},
 | 
| 34 |         {60, 93}, {61, 1}, {62, 57}, {63, 25}};
 | 
| 35 | 
 | 
| 36 | // (2^64)-59 is the largest prime that fits in uint64_t
 | 
| 37 | static constexpr uint64_t LargestPrime64 = 18446744073709551557UL;
 | 
| 38 | 
 | 
| 39 | // Return a prime greater or equal to the lower bound.
 | 
| 40 | // Return 0 if the next prime would not fit in 64 bits.
 | 
| 41 | inline static uint64_t GreaterOrEqualPrime(const uint64_t LowerBound) {
 | 
| 42 |     if (LowerBound > LargestPrime64) {
 | 
| 43 |         return 0;
 | 
| 44 |     }
 | 
| 45 | 
 | 
| 46 |     for (std::size_t I = 0; I < ToPrime.size(); ++I) {
 | 
| 47 |         const uint64_t N = ToPrime[I].first;
 | 
| 48 |         const uint64_t K = ToPrime[I].second;
 | 
| 49 |         const uint64_t Prime = (1ULL << N) - K;
 | 
| 50 |         if (Prime >= LowerBound) {
 | 
| 51 |             return Prime;
 | 
| 52 |         }
 | 
| 53 |     }
 | 
| 54 |     return LargestPrime64;
 | 
| 55 | }
 | 
| 56 | 
 | 
| 57 | template <typename T>
 | 
| 58 | struct Factory {
 | 
| 59 |     template <class... Args>
 | 
| 60 |     T& replace(T& Place, Args&&... Xs) {
 | 
| 61 |         Place = T{std::forward<Args>(Xs)...};
 | 
| 62 |         return Place;
 | 
| 63 |     }
 | 
| 64 | };
 | 
| 65 | 
 | 
| 66 | }  // namespace details
 | 
| 67 | 
 | 
| 68 | /**
 | 
| 69 |  * A concurrent, almost lock-free associative hash-map that can only grow.
 | 
| 70 |  * Elements cannot be removed, the hash-map can only grow.
 | 
| 71 |  *
 | 
| 72 |  * The datastructures enables a configurable number of concurrent access lanes.
 | 
| 73 |  * Access to the datastructure is lock-free between different lanes.
 | 
| 74 |  * Concurrent accesses through the same lane is sequential.
 | 
| 75 |  *
 | 
| 76 |  * Growing the datastructure requires to temporarily lock all lanes to let a
 | 
| 77 |  * single lane perform the growing operation. The global lock is amortized
 | 
| 78 |  * thanks to an exponential growth strategy.
 | 
| 79 |  */
 | 
| 80 | template <class LanesPolicy, class Key, class T, class Hash = std::hash<Key>,
 | 
| 81 |         class KeyEqual = std::equal_to<Key>, class KeyFactory = details::Factory<Key>>
 | 
| 82 | class ConcurrentInsertOnlyHashMap {
 | 
| 83 | public:
 | 
| 84 |     class Node;
 | 
| 85 | 
 | 
| 86 |     using key_type = Key;
 | 
| 87 |     using mapped_type = T;
 | 
| 88 |     using node_type = Node*;
 | 
| 89 |     using value_type = std::pair<const Key, const T>;
 | 
| 90 |     using size_type = std::size_t;
 | 
| 91 |     using hasher = Hash;
 | 
| 92 |     using key_equal = KeyEqual;
 | 
| 93 |     using self_type = ConcurrentInsertOnlyHashMap<Key, T, Hash, KeyEqual, KeyFactory>;
 | 
| 94 |     using lane_id = typename LanesPolicy::lane_id;
 | 
| 95 | 
 | 
| 96 |     class Node {
 | 
| 97 |     public:
 | 
| 98 |         virtual ~Node() {}
 | 
| 99 |         virtual const value_type& value() const = 0;
 | 
| 100 |         virtual const key_type& key() const = 0;
 | 
| 101 |         virtual const mapped_type& mapped() const = 0;
 | 
| 102 |     };
 | 
| 103 | 
 | 
| 104 | private:
 | 
| 105 |     // Each bucket of the hash-map is a linked list.
 | 
| 106 |     struct BucketList : Node {
 | 
| 107 |         virtual ~BucketList() {}
 | 
| 108 | 
 | 
| 109 |         BucketList(const Key& K, const T& V, BucketList* N) : Value(K, V), Next(N) {}
 | 
| 110 | 
 | 
| 111 |         const value_type& value() const {
 | 
| 112 |             return Value;
 | 
| 113 |         }
 | 
| 114 | 
 | 
| 115 |         const key_type& key() const {
 | 
| 116 |             return Value.first;
 | 
| 117 |         }
 | 
| 118 | 
 | 
| 119 |         const mapped_type& mapped() const {
 | 
| 120 |             return Value.second;
 | 
| 121 |         }
 | 
| 122 | 
 | 
| 123 |         // Stores the couple of a key and its associated value.
 | 
| 124 |         value_type Value;
 | 
| 125 | 
 | 
| 126 |         // Points to next element of the map that falls into the same bucket.
 | 
| 127 |         BucketList* Next;
 | 
| 128 |     };
 | 
| 129 | 
 | 
| 130 | public:
 | 
| 131 |     /**
 | 
| 132 |      * @brief Construct a hash-map with at least the given number of buckets.
 | 
| 133 |      *
 | 
| 134 |      * Load-factor is initialized to 1.0.
 | 
| 135 |      */
 | 
| 136 |     ConcurrentInsertOnlyHashMap(const std::size_t LaneCount, const std::size_t Bucket_Count,
 | 
| 137 |             const Hash& hash = Hash(), const KeyEqual& key_equal = KeyEqual(),
 | 
| 138 |             const KeyFactory& key_factory = KeyFactory())
 | 
| 139 |             : Lanes(LaneCount), Hasher(hash), EqualTo(key_equal), Factory(key_factory) {
 | 
| 140 |         Size = 0;
 | 
| 141 |         BucketCount = details::GreaterOrEqualPrime(Bucket_Count);
 | 
| 142 |         if (BucketCount == 0) {
 | 
| 143 |             // Hopefuly this number of buckets is never reached.
 | 
| 144 |             BucketCount = std::numeric_limits<std::size_t>::max();
 | 
| 145 |         }
 | 
| 146 |         LoadFactor = 1.0;
 | 
| 147 |         Buckets = std::make_unique<std::atomic<BucketList*>[]>(BucketCount);
 | 
| 148 |         MaxSizeBeforeGrow = static_cast<std::size_t>(std::ceil(LoadFactor * (double)BucketCount));
 | 
| 149 |     }
 | 
| 150 | 
 | 
| 151 |     ConcurrentInsertOnlyHashMap(const Hash& hash = Hash(), const KeyEqual& key_equal = KeyEqual(),
 | 
| 152 |             const KeyFactory& key_factory = KeyFactory())
 | 
| 153 |             : ConcurrentInsertOnlyHashMap(8, hash, key_equal, key_factory) {}
 | 
| 154 | 
 | 
| 155 |     ~ConcurrentInsertOnlyHashMap() {
 | 
| 156 |         for (std::size_t Bucket = 0; Bucket < BucketCount; ++Bucket) {
 | 
| 157 |             BucketList* L = Buckets[Bucket].load(std::memory_order_relaxed);
 | 
| 158 |             while (L != nullptr) {
 | 
| 159 |                 BucketList* BL = L;
 | 
| 160 |                 L = L->Next;
 | 
| 161 |                 delete (BL);
 | 
| 162 |             }
 | 
| 163 |         }
 | 
| 164 |     }
 | 
| 165 | 
 | 
| 166 |     void setNumLanes(const std::size_t NumLanes) {
 | 
| 167 |         Lanes.setNumLanes(NumLanes);
 | 
| 168 |     }
 | 
| 169 | 
 | 
| 170 |     /** @brief Create a fresh node initialized with the given value and a
 | 
| 171 |      * default-constructed key.
 | 
| 172 |      *
 | 
| 173 |      * The ownership of the returned node given to the caller.
 | 
| 174 |      */
 | 
| 175 |     node_type node(const T& V) {
 | 
| 176 |         BucketList* BL = new BucketList(Key{}, V, nullptr);
 | 
| 177 |         return static_cast<node_type>(BL);
 | 
| 178 |     }
 | 
| 179 | 
 | 
| 180 |     /**
 | 
| 181 |      * @brief Lookup a value associated with a key.
 | 
| 182 |      *
 | 
| 183 |      * The search is done concurrently with possible insertion of the
 | 
| 184 |      * searched key. If the a nullpointer is returned, then the key
 | 
| 185 |      * was not associated with a value when the search began.
 | 
| 186 |      */
 | 
| 187 |     template <class K>
 | 
| 188 |     const value_type* weakFind(const lane_id H, const K& X) const {
 | 
| 189 |         const size_t HashValue = Hasher(X);
 | 
| 190 |         const auto Guard = Lanes.guard(H);
 | 
| 191 |         const size_t Bucket = HashValue % BucketCount;
 | 
| 192 | 
 | 
| 193 |         BucketList* L = Buckets[Bucket].load(std::memory_order_acquire);
 | 
| 194 |         while (L != nullptr) {
 | 
| 195 |             if (EqualTo(L->Value.first, X)) {
 | 
| 196 |                 // found the key
 | 
| 197 |                 return &L->Value;
 | 
| 198 |             }
 | 
| 199 |             L = L->Next;
 | 
| 200 |         }
 | 
| 201 |         return nullptr;
 | 
| 202 |     }
 | 
| 203 | 
 | 
| 204 |     /** @brief Checks if the map contains an element with the given key.
 | 
| 205 |      *
 | 
| 206 |      * The search is done concurrently with possible insertion of the
 | 
| 207 |      * searched key. If return true, then there is definitely an element
 | 
| 208 |      * with the specified key, if return false then there was no such
 | 
| 209 |      * element when the search began.
 | 
| 210 |      */
 | 
| 211 |     template <class K>
 | 
| 212 |     inline bool weakContains(const lane_id H, const K& X) const {
 | 
| 213 |         return weakFind(H, X) != nullptr;
 | 
| 214 |     }
 | 
| 215 | 
 | 
| 216 |     /**
 | 
| 217 |      * @brief Inserts in-place if the key is not mapped, does nothing if the key already exists.
 | 
| 218 |      *
 | 
| 219 |      * @param H is the access lane.
 | 
| 220 |      *
 | 
| 221 |      * @param N is a node initialized with the mapped value to insert.
 | 
| 222 |      *
 | 
| 223 |      * @param Xs are arguments to forward to the hasher, the comparator and and
 | 
| 224 |      * the constructor of the key.
 | 
| 225 |      *
 | 
| 226 |      *
 | 
| 227 |      * Be Careful: the inserted node becomes available to concurrent lanes as
 | 
| 228 |      * soon as it is inserted, thus concurrent lanes may access the inserted
 | 
| 229 |      * value even before the inserting lane returns from this function.
 | 
| 230 |      * This is the reason why the inserting lane must prepare the inserted
 | 
| 231 |      * node's mapped value prior to calling this function.
 | 
| 232 |      *
 | 
| 233 |      * Be Careful: the given node remains the ownership of the caller unless
 | 
| 234 |      * the returned couple second member is true.
 | 
| 235 |      *
 | 
| 236 |      * Be Careful: the given node may not be inserted if the key already
 | 
| 237 |      * exists.  The caller is in charge of handling that case and either
 | 
| 238 |      * dispose of the node or save it for the next insertion operation.
 | 
| 239 |      *
 | 
| 240 |      * Be Careful: Once the given node is actually inserted, its ownership is
 | 
| 241 |      * transfered to the hash-map. However it remains valid.
 | 
| 242 |      *
 | 
| 243 |      * If the key that compares equal to arguments Xs exists, then nothing is
 | 
| 244 |      * inserted. The returned value is the couple of the pointer to the
 | 
| 245 |      * existing value and the false boolean value.
 | 
| 246 |      *
 | 
| 247 |      * If the key that compares equal to arguments Xs does not exist, then the
 | 
| 248 |      * node N is updated with the key constructed from Xs, and inserted in the
 | 
| 249 |      * hash-map. The returned value is the couple of the pointer to the
 | 
| 250 |      * inserted value and the true boolean value.
 | 
| 251 |      *
 | 
| 252 |      */
 | 
| 253 |     template <class... Args>
 | 
| 254 |     std::pair<const value_type*, bool> get(const lane_id H, const node_type N, Args&&... Xs) {
 | 
| 255 |         // At any time a concurrent lane may insert the key before this lane.
 | 
| 256 |         //
 | 
| 257 |         // The synchronisation point is the atomic compare-and-exchange of the
 | 
| 258 |         // head of the bucket list that must contain the inserted node.
 | 
| 259 |         //
 | 
| 260 |         // The insertion algorithm is as follow:
 | 
| 261 |         //
 | 
| 262 |         // 1) Compute the key hash from Xs.
 | 
| 263 |         //
 | 
| 264 |         // 2) Lock the lane, that also prevent concurrent lanes from growing of
 | 
| 265 |         // the datastructure.
 | 
| 266 |         //
 | 
| 267 |         // 3) Determine the bucket where the element must be inserted.
 | 
| 268 |         //
 | 
| 269 |         // 4) Read the "last known head" of the bucket list. Other lanes
 | 
| 270 |         // inserting in the same bucket may update the bucket head
 | 
| 271 |         // concurrently.
 | 
| 272 |         //
 | 
| 273 |         // 5) Search the bucket list for the key by comparing with Xs starting
 | 
| 274 |         // from the last known head. If it is not the first round of search,
 | 
| 275 |         // then stop searching where the previous round of search started.
 | 
| 276 |         //
 | 
| 277 |         // 6) If the key is found return the couple of the value pointer and
 | 
| 278 |         // false (to indicate that this lane did not insert the node N).
 | 
| 279 |         //
 | 
| 280 |         // 7) It the key is not found prepare N for insertion by updating its
 | 
| 281 |         // key with Xs and chaining the last known head.
 | 
| 282 |         //
 | 
| 283 |         // 8) Try to exchange to last known head with N at the bucket head. The
 | 
| 284 |         // atomic compare and exchange operation guarantees that it only
 | 
| 285 |         // succeed if not other node was inserted in the bucket since we
 | 
| 286 |         // searched it, otherwise it fails when another lane has concurrently
 | 
| 287 |         // inserted a node in the same bucket.
 | 
| 288 |         //
 | 
| 289 |         // 9) If the atomic compare and exchange succeeded, the node has just
 | 
| 290 |         // been inserted by this lane. From now-on other lanes can also see
 | 
| 291 |         // the node. Return the couple of a pointer to the inserted value and
 | 
| 292 |         // the true boolean.
 | 
| 293 |         //
 | 
| 294 |         // 10) If the atomic compare and exchange failed, another node has been
 | 
| 295 |         // inserted by a concurrent lane in the same bucket. A new round of
 | 
| 296 |         // search is required -> restart from step 4.
 | 
| 297 |         //
 | 
| 298 |         //
 | 
| 299 |         // The datastructure is optionaly grown after step 9) before returning.
 | 
| 300 | 
 | 
| 301 |         const value_type* Value = nullptr;
 | 
| 302 |         bool Inserted = false;
 | 
| 303 | 
 | 
| 304 |         size_t NewSize;
 | 
| 305 | 
 | 
| 306 |         // 1)
 | 
| 307 |         const size_t HashValue = Hasher(std::forward<Args>(Xs)...);
 | 
| 308 | 
 | 
| 309 |         // 2)
 | 
| 310 |         Lanes.lock(H);  // prevent the datastructure from growing
 | 
| 311 | 
 | 
| 312 |         // 3)
 | 
| 313 |         const size_t Bucket = HashValue % BucketCount;
 | 
| 314 | 
 | 
| 315 |         // 4)
 | 
| 316 |         // the head of the bucket's list last time we checked
 | 
| 317 |         BucketList* LastKnownHead = Buckets[Bucket].load(std::memory_order_acquire);
 | 
| 318 |         // the head of the bucket's list we already searched from
 | 
| 319 |         BucketList* SearchedFrom = nullptr;
 | 
| 320 |         // the node we want to insert
 | 
| 321 |         BucketList* const Node = static_cast<BucketList*>(N);
 | 
| 322 | 
 | 
| 323 |         // Loop until either the node is inserted or the key is found in the bucket.
 | 
| 324 |         // Assuming bucket collisions are rare this loop is not executed more than once.
 | 
| 325 |         while (true) {
 | 
| 326 |             // 5)
 | 
| 327 |             // search the key in the bucket, stop where we already search at a
 | 
| 328 |             // previous iteration.
 | 
| 329 |             BucketList* L = LastKnownHead;
 | 
| 330 |             while (L != SearchedFrom) {
 | 
| 331 |                 if (EqualTo(L->Value.first, std::forward<Args>(Xs)...)) {
 | 
| 332 |                     // 6)
 | 
| 333 |                     // Found the key, no need to insert.
 | 
| 334 |                     // Although it's not strictly necessary, clear the node
 | 
| 335 |                     // chaining to avoid leaving a dangling pointer there.
 | 
| 336 |                     Value = &(L->Value);
 | 
| 337 |                     Node->Next = nullptr;
 | 
| 338 |                     goto Done;
 | 
| 339 |                 }
 | 
| 340 |                 L = L->Next;
 | 
| 341 |             }
 | 
| 342 |             SearchedFrom = LastKnownHead;
 | 
| 343 | 
 | 
| 344 |             // 7)
 | 
| 345 |             // Not found in bucket, prepare node chaining.
 | 
| 346 |             Node->Next = LastKnownHead;
 | 
| 347 |             // The factory step could be done only once, but assuming bucket collisions are
 | 
| 348 |             // rare this whole loop is not executed more than once.
 | 
| 349 |             Factory.replace(const_cast<key_type&>(Node->Value.first), std::forward<Args>(Xs)...);
 | 
| 350 | 
 | 
| 351 |             // 8)
 | 
| 352 |             // Try to insert the key in front of the bucket's list.
 | 
| 353 |             // This operation also performs step 4) because LastKnownHead is
 | 
| 354 |             // updated in the process.
 | 
| 355 |             if (Buckets[Bucket].compare_exchange_strong(
 | 
| 356 |                         LastKnownHead, Node, std::memory_order_release, std::memory_order_relaxed)) {
 | 
| 357 |                 // 9)
 | 
| 358 |                 Inserted = true;
 | 
| 359 |                 NewSize = ++Size;
 | 
| 360 |                 Value = &(Node->Value);
 | 
| 361 |                 goto AfterInserted;
 | 
| 362 |             }
 | 
| 363 | 
 | 
| 364 |             // 10) concurrent insertion detected in this bucket, new round required.
 | 
| 365 |         }
 | 
| 366 | 
 | 
| 367 |     AfterInserted : {
 | 
| 368 |         if (NewSize > MaxSizeBeforeGrow) {
 | 
| 369 |             tryGrow(H);
 | 
| 370 |         }
 | 
| 371 |     }
 | 
| 372 | 
 | 
| 373 |     Done:
 | 
| 374 | 
 | 
| 375 |         Lanes.unlock(H);
 | 
| 376 | 
 | 
| 377 |         // 6,9)
 | 
| 378 |         return std::make_pair(Value, Inserted);
 | 
| 379 |     }
 | 
| 380 | 
 | 
| 381 | private:
 | 
| 382 |     // The concurrent lanes manager.
 | 
| 383 |     LanesPolicy Lanes;
 | 
| 384 | 
 | 
| 385 |     /// Hash function.
 | 
| 386 |     Hash Hasher;
 | 
| 387 | 
 | 
| 388 |     /// Current number of buckets.
 | 
| 389 |     std::size_t BucketCount;
 | 
| 390 | 
 | 
| 391 |     /// Atomic pointer to head bucket linked-list head.
 | 
| 392 |     std::unique_ptr<std::atomic<BucketList*>[]> Buckets;
 | 
| 393 | 
 | 
| 394 |     /// The Equal-to function.
 | 
| 395 |     KeyEqual EqualTo;
 | 
| 396 | 
 | 
| 397 |     KeyFactory Factory;
 | 
| 398 | 
 | 
| 399 |     /// Current number of elements stored in the map.
 | 
| 400 |     std::atomic<std::size_t> Size;
 | 
| 401 | 
 | 
| 402 |     /// Maximum size before the map should grow.
 | 
| 403 |     std::size_t MaxSizeBeforeGrow;
 | 
| 404 | 
 | 
| 405 |     /// The load-factor of the map.
 | 
| 406 |     double LoadFactor;
 | 
| 407 | 
 | 
| 408 |     // Grow the datastructure.
 | 
| 409 |     // Must be called while owning lane H.
 | 
| 410 |     bool tryGrow(const lane_id H) {
 | 
| 411 |         Lanes.beforeLockAllBut(H);
 | 
| 412 | 
 | 
| 413 |         if (Size <= MaxSizeBeforeGrow) {
 | 
| 414 |             // Current size is fine
 | 
| 415 |             Lanes.beforeUnlockAllBut(H);
 | 
| 416 |             return false;
 | 
| 417 |         }
 | 
| 418 | 
 | 
| 419 |         Lanes.lockAllBut(H);
 | 
| 420 | 
 | 
| 421 |         {  // safe section
 | 
| 422 | 
 | 
| 423 |             // Compute the new number of buckets:
 | 
| 424 |             // Chose a prime number of buckets that ensures the desired load factor
 | 
| 425 |             // given the current number of elements in the map.
 | 
| 426 |             const std::size_t CurrentSize = Size;
 | 
| 427 |             assert(LoadFactor > 0);
 | 
| 428 |             const std::size_t NeededBucketCount =
 | 
| 429 |                     static_cast<std::size_t>(std::ceil(static_cast<double>(CurrentSize) / LoadFactor));
 | 
| 430 |             std::size_t NewBucketCount = NeededBucketCount;
 | 
| 431 |             for (std::size_t I = 0; I < details::ToPrime.size(); ++I) {
 | 
| 432 |                 const uint64_t N = details::ToPrime[I].first;
 | 
| 433 |                 const uint64_t K = details::ToPrime[I].second;
 | 
| 434 |                 const uint64_t Prime = (1ULL << N) - K;
 | 
| 435 |                 if (Prime >= NeededBucketCount) {
 | 
| 436 |                     NewBucketCount = Prime;
 | 
| 437 |                     break;
 | 
| 438 |                 }
 | 
| 439 |             }
 | 
| 440 | 
 | 
| 441 |             std::unique_ptr<std::atomic<BucketList*>[]> NewBuckets =
 | 
| 442 |                     std::make_unique<std::atomic<BucketList*>[]>(NewBucketCount);
 | 
| 443 | 
 | 
| 444 |             // Rehash, this operation is costly because it requires to scan
 | 
| 445 |             // the existing elements, compute its hash to find its new bucket
 | 
| 446 |             // and insert in the new bucket.
 | 
| 447 |             //
 | 
| 448 |             // Maybe concurrent lanes could help using some job-stealing algorithm.
 | 
| 449 |             //
 | 
| 450 |             // Use relaxed memory ordering since the whole operation takes place
 | 
| 451 |             // in a critical section.
 | 
| 452 |             for (std::size_t B = 0; B < BucketCount; ++B) {
 | 
| 453 |                 BucketList* L = Buckets[B].load(std::memory_order_relaxed);
 | 
| 454 |                 while (L) {
 | 
| 455 |                     BucketList* const Elem = L;
 | 
| 456 |                     L = L->Next;
 | 
| 457 | 
 | 
| 458 |                     const auto& Value = Elem->Value;
 | 
| 459 |                     std::size_t NewHash = Hasher(Value.first);
 | 
| 460 |                     const std::size_t NewBucket = NewHash % NewBucketCount;
 | 
| 461 |                     Elem->Next = NewBuckets[NewBucket].load(std::memory_order_relaxed);
 | 
| 462 |                     NewBuckets[NewBucket].store(Elem, std::memory_order_relaxed);
 | 
| 463 |                 }
 | 
| 464 |             }
 | 
| 465 | 
 | 
| 466 |             Buckets = std::move(NewBuckets);
 | 
| 467 |             BucketCount = NewBucketCount;
 | 
| 468 |             MaxSizeBeforeGrow =
 | 
| 469 |                     static_cast<std::size_t>(std::ceil(static_cast<double>(NewBucketCount) * LoadFactor));
 | 
| 470 |         }
 | 
| 471 | 
 | 
| 472 |         Lanes.beforeUnlockAllBut(H);
 | 
| 473 |         Lanes.unlockAllBut(H);
 | 
| 474 |         return true;
 | 
| 475 |     }
 | 
| 476 | };
 | 
| 477 | 
 | 
| 478 | }  // namespace souffle
 |