1 | /*
|
2 | * Souffle - A Datalog Compiler
|
3 | * Copyright (c) 2021, The Souffle Developers. All rights reserved
|
4 | * Licensed under the Universal Permissive License v 1.0 as shown at:
|
5 | * - https://opensource.org/licenses/UPL
|
6 | * - <souffle root>/licenses/SOUFFLE-UPL.txt
|
7 | */
|
8 |
|
9 | /************************************************************************
|
10 | *
|
11 | * @file FunctionalUtil.h
|
12 | *
|
13 | * @brief Datalog project utilities
|
14 | *
|
15 | ***********************************************************************/
|
16 |
|
17 | #pragma once
|
18 |
|
19 | #include "souffle/utility/DynamicCasting.h"
|
20 | #include "souffle/utility/Iteration.h"
|
21 | #include "souffle/utility/MiscUtil.h"
|
22 | #include <algorithm>
|
23 | #include <cassert>
|
24 | #include <functional>
|
25 | #include <map>
|
26 | #include <set>
|
27 | #include <type_traits>
|
28 | #include <utility>
|
29 | #include <vector>
|
30 |
|
31 | namespace souffle {
|
32 |
|
33 | // -------------------------------------------------------------------------------
|
34 | // Functional Utils
|
35 | // -------------------------------------------------------------------------------
|
36 |
|
37 | /**
|
38 | * A functor comparing the dereferenced value of a pointer type utilizing a
|
39 | * given comparator. Its main use case are sets of non-null pointers which should
|
40 | * be ordered according to the value addressed by the pointer.
|
41 | */
|
42 | template <typename T, typename C = std::less<T>>
|
43 | struct deref_less {
|
44 | bool operator()(const T* a, const T* b) const {
|
45 | return C()(*a, *b);
|
46 | }
|
47 | };
|
48 |
|
49 | // -------------------------------------------------------------------------------
|
50 | // Lambda Utils
|
51 | // -------------------------------------------------------------------------------
|
52 |
|
53 | /**
|
54 | * A type trait enabling the deduction of type properties of lambdas.
|
55 | *
|
56 | * source:
|
57 | * https://stackoverflow.com/questions/7943525/is-it-possible-to-figure-out-the-parameter-type-and-return-type-of-a-lambda
|
58 | */
|
59 | template <typename A, typename = void>
|
60 | struct lambda_traits;
|
61 |
|
62 | template <typename A>
|
63 | struct lambda_traits<A, std::enable_if_t<std::is_class_v<std::decay_t<A>>>>
|
64 | : lambda_traits<decltype(&std::decay_t<A>::operator())> {};
|
65 |
|
66 | #define LAMBDA_TYPE_INFO_REM_CTOR(...) __VA_ARGS__
|
67 | #define LAMBDA_TYPE_INFO_SPEC(kind, cv, var, is_var) \
|
68 | struct lambda_traits<R(kind)(Args... LAMBDA_TYPE_INFO_REM_CTOR var) cv, void> { \
|
69 | using arity = std::integral_constant<std::size_t, sizeof...(Args)>; \
|
70 | using is_variadic = std::integral_constant<bool, is_var>; \
|
71 | using is_const = std::is_const<int cv>; \
|
72 | \
|
73 | using result_type = R; \
|
74 | \
|
75 | template <std::size_t i> \
|
76 | using arg = typename std::tuple_element<i, std::tuple<Args..., void>>::type; \
|
77 | };
|
78 |
|
79 | #define LAMBDA_TYPE_INFO_MEMBER(cv, var, is_var) \
|
80 | template <typename C, typename R, typename... Args> \
|
81 | LAMBDA_TYPE_INFO_SPEC(C::*, cv, var, is_var)
|
82 |
|
83 | #define LAMBDA_TYPE_INFO_FUNC(var, is_var) \
|
84 | template <typename R, typename... Args> \
|
85 | LAMBDA_TYPE_INFO_SPEC(*, , var, is_var) \
|
86 | template <typename R, typename... Args> \
|
87 | LAMBDA_TYPE_INFO_SPEC(&, , var, is_var)
|
88 |
|
89 | LAMBDA_TYPE_INFO_MEMBER(const, (, ...), 1)
|
90 | LAMBDA_TYPE_INFO_MEMBER(const, (), 0)
|
91 | LAMBDA_TYPE_INFO_MEMBER(, (, ...), 1)
|
92 | LAMBDA_TYPE_INFO_MEMBER(, (), 0)
|
93 | LAMBDA_TYPE_INFO_FUNC((, ...), 1)
|
94 | LAMBDA_TYPE_INFO_FUNC((), 0)
|
95 | #undef LAMBDA_TYPE_INFO_REM_CTOR
|
96 | #undef LAMBDA_TYPE_INFO_SPEC
|
97 | #undef LAMBDA_TYPE_INFO_MEMBER
|
98 | #undef LAMBDA_TYPE_INFO_FUNC
|
99 |
|
100 | namespace detail {
|
101 |
|
102 | template <typename F>
|
103 | struct LambdaFix {
|
104 | F f;
|
105 | template <typename... Args>
|
106 | auto operator()(Args&&... args) -> decltype(f(*this, std::forward<Args>(args)...)) {
|
107 | return f(*this, std::forward<Args>(args)...);
|
108 | }
|
109 | };
|
110 |
|
111 | } // namespace detail
|
112 |
|
113 | template <typename F /* f -> ... */>
|
114 | detail::LambdaFix<F> fix(F f) {
|
115 | return {std::move(f)};
|
116 | }
|
117 |
|
118 | // -------------------------------------------------------------------------------
|
119 | // General Algorithms
|
120 | // -------------------------------------------------------------------------------
|
121 |
|
122 | namespace detail {
|
123 | constexpr auto coerceToBool = [](auto&& x) { return (bool)x; };
|
124 |
|
125 | template <typename C, typename F /* : A -> B */>
|
126 | auto mapVector(C& xs, F&& f) {
|
127 | std::vector<decltype(f(xs[0]))> ys;
|
128 | ys.reserve(xs.size());
|
129 | for (auto&& x : xs) {
|
130 | ys.push_back(f(x));
|
131 | }
|
132 | return ys;
|
133 | }
|
134 | } // namespace detail
|
135 |
|
136 | /**
|
137 | * A generic test checking whether all elements within a container satisfy a
|
138 | * certain predicate.
|
139 | *
|
140 | * @param c the container
|
141 | * @param p the predicate
|
142 | * @return true if for all elements x in c the predicate p(x) is true, false
|
143 | * otherwise; for empty containers the result is always true
|
144 | */
|
145 | template <typename Container, typename UnaryPredicate>
|
146 | bool all_of(const Container& c, UnaryPredicate p) {
|
147 | return std::all_of(c.begin(), c.end(), p);
|
148 | }
|
149 |
|
150 | /**
|
151 | * A generic test checking whether any elements within a container satisfy a
|
152 | * certain predicate.
|
153 | *
|
154 | * @param c the container
|
155 | * @param p the predicate
|
156 | * @return true if there is an element x in c such that predicate p(x) is true, false
|
157 | * otherwise; for empty containers the result is always false
|
158 | */
|
159 | template <typename Container, typename UnaryPredicate>
|
160 | bool any_of(const Container& c, UnaryPredicate p) {
|
161 | return std::any_of(c.begin(), c.end(), p);
|
162 | }
|
163 |
|
164 | /**
|
165 | * A generic test checking whether all elements within a container satisfy a
|
166 | * certain predicate.
|
167 | *
|
168 | * @param c the container
|
169 | * @param p the predicate
|
170 | * @return true if for all elements x in c the predicate p(x) is true, false
|
171 | * otherwise; for empty containers the result is always true
|
172 | */
|
173 | template <typename Container, typename UnaryPredicate>
|
174 | bool none_of(const Container& c, UnaryPredicate p) {
|
175 | return std::none_of(c.begin(), c.end(), p);
|
176 | }
|
177 |
|
178 | /**
|
179 | * Filter a vector to exclude certain elements.
|
180 | */
|
181 | template <typename A, typename F>
|
182 | std::vector<A> filterNot(std::vector<A> xs, F&& f) {
|
183 | xs.erase(std::remove_if(xs.begin(), xs.end(), std::forward<F>(f)), xs.end());
|
184 | return xs;
|
185 | }
|
186 |
|
187 | /**
|
188 | * Filter a vector to include certain elements.
|
189 | */
|
190 | template <typename A, typename F>
|
191 | std::vector<A> filter(std::vector<A> xs, F&& f) {
|
192 | return filterNot(std::move(xs), [&](auto&& x) { return !f(x); });
|
193 | }
|
194 |
|
195 | template <typename B, typename CrossCast = void, typename C>
|
196 | auto filterAs(C&& xs) {
|
197 | return filterMap(std::forward<C>(xs), [](auto&& x) { return as<B, CrossCast>(x); });
|
198 | }
|
199 |
|
200 | /**
|
201 | * Fold left a sequence
|
202 | */
|
203 | template <typename A, typename B, typename F /* : B -> A -> B */>
|
204 | B foldl(std::vector<A> xs, B zero, F&& f) {
|
205 | B accum = std::move(zero);
|
206 | for (auto&& x : xs)
|
207 | accum = f(std::move(accum), std::move(x));
|
208 | return accum;
|
209 | }
|
210 |
|
211 | /**
|
212 | * Fold left a non-empty sequence
|
213 | */
|
214 | template <typename A, typename F /* : A -> A -> A */>
|
215 | auto foldl(std::vector<A> xs, F&& f) {
|
216 | assert(!xs.empty() && "cannot foldl an empty sequence");
|
217 | auto it = xs.begin();
|
218 | A y = std::move(*it++);
|
219 | for (; it != xs.end(); it++) {
|
220 | y = f(std::move(y), std::move(*it));
|
221 | }
|
222 | return y;
|
223 | }
|
224 |
|
225 | template <typename A, typename B, typename F /* : A -> B -> B */>
|
226 | B foldr(std::vector<A> xs, B zero, F&& f) {
|
227 | B accum = std::move(zero);
|
228 | for (auto&& x : reverse(xs))
|
229 | accum = f(std::move(x), std::move(accum));
|
230 | return accum;
|
231 | }
|
232 |
|
233 | template <typename A, typename F /* : A -> A -> A */>
|
234 | auto foldr(std::vector<A> xs, F&& f) {
|
235 | assert(!xs.empty() && "cannot foldr an empty sequence");
|
236 | auto it = xs.rbegin();
|
237 | A y = std::move(*it++);
|
238 | for (; it != xs.rend(); it++) {
|
239 | y = f(std::move(*it), std::move(y));
|
240 | }
|
241 | return y;
|
242 | }
|
243 |
|
244 | /**
|
245 | * Applies a function to each element of a vector and returns the results.
|
246 | *
|
247 | * Unlike `makeTransformRange`, this creates a transformed collection instead of a transformed view.
|
248 | */
|
249 | template <typename A, typename F /* : A -> B */>
|
250 | auto map(std::vector<A>& xs, F&& f) {
|
251 | return detail::mapVector(xs, std::forward<F>(f));
|
252 | }
|
253 |
|
254 | template <typename A, typename F /* : A -> B */>
|
255 | auto map(const std::vector<A>& xs, F&& f) {
|
256 | return detail::mapVector(xs, std::forward<F>(f));
|
257 | }
|
258 |
|
259 | template <typename A, typename F /* : A -> B */>
|
260 | auto map(std::vector<A>&& xs, F&& f) {
|
261 | return detail::mapVector(xs, std::forward<F>(f));
|
262 | }
|
263 |
|
264 | template <typename A, typename F /* : A -> pointer_like<B> */>
|
265 | auto filterMap(const std::vector<A>& xs, F&& f) {
|
266 | using R = decltype(f(xs[0]));
|
267 | // not a pointer -> assume it's `std::optional`
|
268 | using B = std::conditional_t<std::is_pointer_v<R>, R, std::decay_t<decltype(*std::declval<R>())>>;
|
269 | std::vector<B> ys;
|
270 | ys.reserve(xs.size());
|
271 | for (auto&& x : xs) {
|
272 | auto y = f(std::move(x));
|
273 | if (y) {
|
274 | if constexpr (std::is_pointer_v<R>)
|
275 | ys.push_back(std::move(y));
|
276 | else // assume it's `std::optional`
|
277 | ys.push_back(std::move(*y));
|
278 | }
|
279 | }
|
280 | return ys;
|
281 | }
|
282 |
|
283 | namespace detail {
|
284 |
|
285 | template <typename It>
|
286 | constexpr bool IsLegacyIteratorOutput_v = std::is_reference_v<decltype(*std::declval<It>())>&&
|
287 | std::is_move_assignable_v<std::remove_reference_t<decltype(*std::declval<It>())>>;
|
288 |
|
289 | // HACK: Workaround r-ref collapsing w/ template parameters.
|
290 | template <typename C>
|
291 | struct filter {
|
292 | static_assert(!std::is_reference_v<C>);
|
293 | static constexpr bool has_output_iter = IsLegacyIteratorOutput_v<typename C::iterator>;
|
294 |
|
295 | template <typename F>
|
296 | C operator()(C&& xs, F&& f) {
|
297 | // TODO: replace w/ C++20 `std::erase_if`
|
298 | if constexpr (has_output_iter) {
|
299 | xs.erase(std::remove_if(xs.begin(), xs.end(), [&](auto&& x) { return !f(x); }), xs.end());
|
300 | } else {
|
301 | auto end = xs.end();
|
302 | for (auto it = xs.begin(); it != end;)
|
303 | it = f(*it) ? ++it : xs.erase(it);
|
304 | }
|
305 | return std::move(xs);
|
306 | }
|
307 |
|
308 | template <typename F, bool enable = std::is_copy_constructible_v<typename C::value_type>>
|
309 | std::enable_if_t<enable, C> operator()(const C& xs, F&& f) {
|
310 | C ys;
|
311 | for (auto&& x : xs)
|
312 | if (f(x)) {
|
313 | if constexpr (has_output_iter)
|
314 | ys.insert(ys.end(), x);
|
315 | else
|
316 | ys.insert(x);
|
317 | }
|
318 | return ys;
|
319 | }
|
320 | };
|
321 | } // namespace detail
|
322 |
|
323 | template <typename C, typename F /* : C::element_type -> bool */>
|
324 | auto filter(C&& xs, F&& f) {
|
325 | return detail::filter<std::decay_t<C>>{}(std::forward<C>(xs), std::forward<F>(f));
|
326 | }
|
327 |
|
328 | template <typename C, typename F /* : C::element_type -> bool */>
|
329 | auto filterNot(C&& xs, F&& f) {
|
330 | return filter(std::forward<C>(xs), [&](auto&& x) { return !f(x); });
|
331 | }
|
332 |
|
333 | template <typename A, typename F /* : A -> B */>
|
334 | auto groupBy(std::vector<A> xs, F&& key) {
|
335 | std::map<decltype(key(xs.front())), std::vector<A>> m;
|
336 | for (auto&& x : xs)
|
337 | m[key(x)].push_back(std::move(x));
|
338 | return m;
|
339 | }
|
340 |
|
341 | template <typename A, typename B, typename F /* : const A& -> const B& -> () */>
|
342 | void zipForEach(const std::vector<A>& xs, const std::vector<B>& ys, F&& f) {
|
343 | for (size_t i = 0; i < std::min(xs.size(), ys.size()); i++)
|
344 | f(xs[i], ys[i]);
|
345 | }
|
346 |
|
347 | template <typename A, typename B, typename F /* : const A& -> const B& -> () */>
|
348 | auto zipMap(const std::vector<A>& xs, const std::vector<B>& ys, F&& f) {
|
349 | size_t n = std::min(xs.size(), ys.size());
|
350 | std::vector<decltype(f(xs.front(), ys.front()))> zs;
|
351 | zs.reserve(n);
|
352 | for (size_t i = 0; i < n; i++)
|
353 | zs.push_back(f(xs[i], ys[i]));
|
354 | return zs;
|
355 | }
|
356 |
|
357 | template <typename A, typename B>
|
358 | std::vector<A> concat(std::vector<A> xs, std::vector<B> ys) {
|
359 | for (auto&& y : ys)
|
360 | xs.push_back(std::move(y));
|
361 |
|
362 | return xs;
|
363 | }
|
364 |
|
365 | template <typename A, typename B>
|
366 | std::vector<A> concat(std::vector<A> xs, const range<B>& ys) {
|
367 | for (A y : ys)
|
368 | xs.push_back(std::move(y));
|
369 |
|
370 | return xs;
|
371 | }
|
372 |
|
373 | template <typename A, typename B>
|
374 | std::vector<A> concat(std::vector<A> xs, B x) {
|
375 | xs.push_back(std::move(x));
|
376 | return xs;
|
377 | }
|
378 |
|
379 | template <typename A, typename B>
|
380 | void append(std::vector<A>& xs, B&& y) {
|
381 | xs = concat(std::move(xs), std::forward<B>(y));
|
382 | }
|
383 |
|
384 | // -------------------------------------------------------------------------------
|
385 | // Set Utilities
|
386 | // -------------------------------------------------------------------------------
|
387 |
|
388 | template <typename A>
|
389 | std::set<A> operator&(const std::set<A, std::less<A>>& lhs, const std::set<A, std::less<A>>& rhs) {
|
390 | std::set<A> result;
|
391 | std::set_intersection(
|
392 | lhs.begin(), lhs.end(), rhs.begin(), rhs.end(), std::inserter(result, result.begin()));
|
393 | return result;
|
394 | }
|
395 |
|
396 | template <typename A>
|
397 | std::set<A> operator|(const std::set<A, std::less<A>>& lhs, const std::set<A, std::less<A>>& rhs) {
|
398 | std::set<A> result;
|
399 | std::set_union(lhs.begin(), lhs.end(), rhs.begin(), rhs.end(), std::inserter(result, result.begin()));
|
400 | return result;
|
401 | }
|
402 |
|
403 | template <typename A>
|
404 | std::set<A> operator-(const std::set<A, std::less<A>>& lhs, const std::set<A, std::less<A>>& rhs) {
|
405 | std::set<A> result;
|
406 | std::set_difference(
|
407 | lhs.begin(), lhs.end(), rhs.begin(), rhs.end(), std::inserter(result, result.begin()));
|
408 | return result;
|
409 | }
|
410 |
|
411 | } // namespace souffle
|