1 | /*
|
2 | * Souffle - A Datalog Compiler
|
3 | * Copyright (c) 2013, 2015, Oracle and/or its affiliates. All rights reserved
|
4 | * Licensed under the Universal Permissive License v 1.0 as shown at:
|
5 | * - https://opensource.org/licenses/UPL
|
6 | * - <souffle root>/licenses/SOUFFLE-UPL.txt
|
7 | */
|
8 |
|
9 | /************************************************************************
|
10 | *
|
11 | * @file ParallelUtil.h
|
12 | *
|
13 | * A set of utilities abstracting from the underlying parallel library.
|
14 | * Currently supported APIs: OpenMP and Cilk
|
15 | *
|
16 | ***********************************************************************/
|
17 |
|
18 | #pragma once
|
19 |
|
20 | #include <atomic>
|
21 | #include <cassert>
|
22 | #include <cstddef>
|
23 | #include <memory>
|
24 | #include <new>
|
25 |
|
26 | // https://bugs.llvm.org/show_bug.cgi?id=41423
|
27 | #if defined(__cpp_lib_hardware_interference_size) && (__cpp_lib_hardware_interference_size != 201703L)
|
28 | using std::hardware_constructive_interference_size;
|
29 | using std::hardware_destructive_interference_size;
|
30 | #else
|
31 | // 64 bytes on x86-64 │ L1_CACHE_BYTES │ L1_CACHE_SHIFT │ __cacheline_aligned │
|
32 | // ...
|
33 | constexpr std::size_t hardware_constructive_interference_size = 2 * sizeof(max_align_t);
|
34 | constexpr std::size_t hardware_destructive_interference_size = 2 * sizeof(max_align_t);
|
35 | #endif
|
36 |
|
37 | #ifdef _OPENMP
|
38 |
|
39 | /**
|
40 | * Implementation of parallel control flow constructs utilizing OpenMP
|
41 | */
|
42 |
|
43 | #include <omp.h>
|
44 |
|
45 | #ifdef __APPLE__
|
46 | #define pthread_yield pthread_yield_np
|
47 | #elif !defined(_MSC_VER)
|
48 | #include <sched.h>
|
49 | // pthread_yield is deprecated and should be replaced by sched_yield
|
50 | #define pthread_yield sched_yield
|
51 | #elif defined _MSC_VER
|
52 | #include <thread>
|
53 | #define NOMINMAX
|
54 | #include <windows.h>
|
55 | #define pthread_yield std::this_thread::yield
|
56 | #endif
|
57 |
|
58 | #ifdef _MSC_VER
|
59 | // support for a parallel region
|
60 | #define PARALLEL_START __pragma(omp parallel) {
|
61 | #define PARALLEL_END }
|
62 |
|
63 | // support for parallel loops
|
64 | #define pfor __pragma(omp for schedule(dynamic)) for
|
65 | #else
|
66 | // support for a parallel region
|
67 | #define PARALLEL_START _Pragma("omp parallel") {
|
68 | #define PARALLEL_END }
|
69 |
|
70 | // support for parallel loops
|
71 | #define pfor _Pragma("omp for schedule(dynamic)") for
|
72 | #endif
|
73 |
|
74 | // spawn and sync are processed sequentially (overhead to expensive)
|
75 | #define task_spawn
|
76 | #define task_sync
|
77 |
|
78 | // section start / end => corresponding OpenMP pragmas
|
79 | // NOTE: disabled since it causes performance losses
|
80 | //#define SECTIONS_START _Pragma("omp parallel sections") {
|
81 | // NOTE: we stick to flat-level parallelism since it is faster due to thread pooling
|
82 | #define SECTIONS_START {
|
83 | #define SECTIONS_END }
|
84 |
|
85 | // the markers for a single section
|
86 | //#define SECTION_START _Pragma("omp section") {
|
87 | #define SECTION_START {
|
88 | #define SECTION_END }
|
89 |
|
90 | // a macro to create an operation context
|
91 | #define CREATE_OP_CONTEXT(NAME, INIT) [[maybe_unused]] auto NAME = INIT;
|
92 | #define READ_OP_CONTEXT(NAME) NAME
|
93 |
|
94 | #else
|
95 |
|
96 | // support for a parallel region => sequential execution
|
97 | #define PARALLEL_START {
|
98 | #define PARALLEL_END }
|
99 |
|
100 | // support for parallel loops => simple sequential loop
|
101 | #define pfor for
|
102 |
|
103 | // spawn and sync not supported
|
104 | #define task_spawn
|
105 | #define task_sync
|
106 |
|
107 | // sections are processed sequentially
|
108 | #define SECTIONS_START {
|
109 | #define SECTIONS_END }
|
110 |
|
111 | // sections are inlined
|
112 | #define SECTION_START {
|
113 | #define SECTION_END }
|
114 |
|
115 | // a macro to create an operation context
|
116 | #define CREATE_OP_CONTEXT(NAME, INIT) [[maybe_unused]] auto NAME = INIT;
|
117 | #define READ_OP_CONTEXT(NAME) NAME
|
118 |
|
119 | // mark es sequential
|
120 | #define IS_SEQUENTIAL
|
121 |
|
122 | #endif
|
123 |
|
124 | #ifndef IS_SEQUENTIAL
|
125 | #define IS_PARALLEL
|
126 | #endif
|
127 |
|
128 | #ifdef IS_PARALLEL
|
129 | #include <mutex>
|
130 | #include <vector>
|
131 | #define MAX_THREADS (omp_get_max_threads())
|
132 | #else
|
133 | #define MAX_THREADS (1)
|
134 | #endif
|
135 |
|
136 | namespace souffle {
|
137 |
|
138 | struct SeqConcurrentLanes {
|
139 | struct TrivialLock {
|
140 | ~TrivialLock() {}
|
141 | };
|
142 |
|
143 | using lane_id = std::size_t;
|
144 | using unique_lock_type = TrivialLock;
|
145 |
|
146 | explicit SeqConcurrentLanes(std::size_t = 1) {}
|
147 | SeqConcurrentLanes(const SeqConcurrentLanes&) = delete;
|
148 | SeqConcurrentLanes(SeqConcurrentLanes&&) = delete;
|
149 |
|
150 | virtual ~SeqConcurrentLanes() {}
|
151 |
|
152 | std::size_t lanes() const {
|
153 | return 1;
|
154 | }
|
155 |
|
156 | void setNumLanes(const std::size_t) {}
|
157 |
|
158 | unique_lock_type guard(const lane_id) const {
|
159 | return TrivialLock();
|
160 | }
|
161 |
|
162 | void lock(const lane_id) const {
|
163 | return;
|
164 | }
|
165 |
|
166 | void unlock(const lane_id) const {
|
167 | return;
|
168 | }
|
169 |
|
170 | void beforeLockAllBut(const lane_id) const {
|
171 | return;
|
172 | }
|
173 |
|
174 | void beforeUnlockAllBut(const lane_id) const {
|
175 | return;
|
176 | }
|
177 |
|
178 | void lockAllBut(const lane_id) const {
|
179 | return;
|
180 | }
|
181 |
|
182 | void unlockAllBut(const lane_id) const {
|
183 | return;
|
184 | }
|
185 | };
|
186 |
|
187 | #ifdef IS_PARALLEL
|
188 |
|
189 | /**
|
190 | * A small utility class for implementing simple locks.
|
191 | */
|
192 | class Lock {
|
193 | // the underlying mutex
|
194 | std::mutex mux;
|
195 |
|
196 | public:
|
197 | struct Lease {
|
198 | Lease(std::mutex& mux) : mux(&mux) {
|
199 | mux.lock();
|
200 | }
|
201 | Lease(Lease&& other) : mux(other.mux) {
|
202 | other.mux = nullptr;
|
203 | }
|
204 | Lease(const Lease& other) = delete;
|
205 | ~Lease() {
|
206 | if (mux != nullptr) {
|
207 | mux->unlock();
|
208 | }
|
209 | }
|
210 |
|
211 | protected:
|
212 | std::mutex* mux;
|
213 | };
|
214 |
|
215 | // acquired the lock for the live-cycle of the returned guard
|
216 | Lease acquire() {
|
217 | return Lease(mux);
|
218 | }
|
219 |
|
220 | void lock() {
|
221 | mux.lock();
|
222 | }
|
223 |
|
224 | bool try_lock() {
|
225 | return mux.try_lock();
|
226 | }
|
227 |
|
228 | void unlock() {
|
229 | mux.unlock();
|
230 | }
|
231 | };
|
232 |
|
233 | // /* valuable source: http://locklessinc.com/articles/locks/ */
|
234 |
|
235 | namespace detail {
|
236 |
|
237 | /* Pause instruction to prevent excess processor bus usage */
|
238 | #if defined _MSC_VER
|
239 | #define cpu_relax() YieldProcessor()
|
240 | #else
|
241 | #ifdef __x86_64__
|
242 | #define cpu_relax() asm volatile("pause\n" : : : "memory")
|
243 | #else
|
244 | #define cpu_relax() asm volatile("" : : : "memory")
|
245 | #endif
|
246 | #endif
|
247 |
|
248 | /**
|
249 | * A utility class managing waiting operations for spin locks.
|
250 | */
|
251 | class Waiter {
|
252 | int i = 0;
|
253 |
|
254 | public:
|
255 | Waiter() = default;
|
256 |
|
257 | /**
|
258 | * Conducts a wait operation.
|
259 | */
|
260 | void operator()() {
|
261 | ++i;
|
262 | if ((i % 1000) == 0) {
|
263 | // there was no progress => let others work
|
264 | pthread_yield();
|
265 | } else {
|
266 | // relax this CPU
|
267 | cpu_relax();
|
268 | }
|
269 | }
|
270 | };
|
271 | } // namespace detail
|
272 |
|
273 | /* compare: http://en.cppreference.com/w/cpp/atomic/atomic_flag */
|
274 | class SpinLock {
|
275 | std::atomic<int> lck{0};
|
276 |
|
277 | public:
|
278 | SpinLock() = default;
|
279 |
|
280 | void lock() {
|
281 | detail::Waiter wait;
|
282 | while (!try_lock()) {
|
283 | wait();
|
284 | }
|
285 | }
|
286 |
|
287 | bool try_lock() {
|
288 | int should = 0;
|
289 | return lck.compare_exchange_weak(should, 1, std::memory_order_acquire);
|
290 | }
|
291 |
|
292 | void unlock() {
|
293 | lck.store(0, std::memory_order_release);
|
294 | }
|
295 | };
|
296 |
|
297 | /**
|
298 | * A read/write lock for increased access performance on a
|
299 | * read-heavy use case.
|
300 | */
|
301 | class ReadWriteLock {
|
302 | /**
|
303 | * Based on paper:
|
304 | * Scalable Reader-Writer Synchronization
|
305 | * for Shared-Memory Multiprocessors
|
306 | *
|
307 | * Layout of the lock:
|
308 | * 31 ... 2 1 0
|
309 | * +-------------------------+--------------------+--------------------+
|
310 | * | interested reader count | waiting writer | active writer flag |
|
311 | * +-------------------------+--------------------+--------------------+
|
312 | */
|
313 |
|
314 | std::atomic<int> lck{0};
|
315 |
|
316 | public:
|
317 | ReadWriteLock() = default;
|
318 |
|
319 | void start_read() {
|
320 | // add reader
|
321 | auto r = lck.fetch_add(4, std::memory_order_acquire);
|
322 |
|
323 | // wait until there is no writer any more
|
324 | detail::Waiter wait;
|
325 | while (r & 0x3) {
|
326 | // release reader
|
327 | end_read();
|
328 |
|
329 | // wait a bit
|
330 | wait();
|
331 |
|
332 | // apply as a reader again
|
333 | r = lck.fetch_add(4, std::memory_order_acquire);
|
334 |
|
335 | } // while there is a writer => spin
|
336 | }
|
337 |
|
338 | void end_read() {
|
339 | lck.fetch_sub(4, std::memory_order_release);
|
340 | }
|
341 |
|
342 | void start_write() {
|
343 | detail::Waiter wait;
|
344 |
|
345 | // set wait-for-write bit
|
346 | auto stat = lck.fetch_or(2, std::memory_order_acquire);
|
347 | while (stat & 0x2) {
|
348 | wait();
|
349 | stat = lck.fetch_or(2, std::memory_order_acquire);
|
350 | }
|
351 |
|
352 | // the caller may starve here ...
|
353 | int should = 2;
|
354 | while (!lck.compare_exchange_strong(
|
355 | should, 1, std::memory_order_acquire, std::memory_order_relaxed)) {
|
356 | wait();
|
357 | should = 2;
|
358 | }
|
359 | }
|
360 |
|
361 | bool try_write() {
|
362 | int should = 0;
|
363 | return lck.compare_exchange_strong(should, 1, std::memory_order_acquire, std::memory_order_relaxed);
|
364 | }
|
365 |
|
366 | void end_write() {
|
367 | lck.fetch_sub(1, std::memory_order_release);
|
368 | }
|
369 |
|
370 | bool try_upgrade_to_write() {
|
371 | int should = 4;
|
372 | return lck.compare_exchange_strong(should, 1, std::memory_order_acquire, std::memory_order_relaxed);
|
373 | }
|
374 |
|
375 | void downgrade_to_read() {
|
376 | // delete write bit + set num readers to 1
|
377 | lck.fetch_add(3, std::memory_order_release);
|
378 | }
|
379 | };
|
380 |
|
381 | /**
|
382 | * An implementation of an optimistic r/w lock.
|
383 | */
|
384 | class OptimisticReadWriteLock {
|
385 | /**
|
386 | * The version number utilized for the synchronization.
|
387 | *
|
388 | * Usage:
|
389 | * - even version numbers are stable versions, not being updated
|
390 | * - odd version numbers are temporary versions, currently being updated
|
391 | */
|
392 | std::atomic<int> version{0};
|
393 |
|
394 | public:
|
395 | /**
|
396 | * The lease utilized to link start and end of read phases.
|
397 | */
|
398 | class Lease {
|
399 | friend class OptimisticReadWriteLock;
|
400 | int version;
|
401 |
|
402 | public:
|
403 | Lease(int version = 0) : version(version) {}
|
404 | Lease(const Lease& lease) = default;
|
405 | Lease& operator=(const Lease& other) = default;
|
406 | Lease& operator=(Lease&& other) = default;
|
407 | };
|
408 |
|
409 | /**
|
410 | * A default constructor initializing the lock.
|
411 | */
|
412 | OptimisticReadWriteLock() = default;
|
413 |
|
414 | /**
|
415 | * Starts a read phase, making sure that there is currently no
|
416 | * active concurrent modification going on. The resulting lease
|
417 | * enables the invoking process to later-on verify that no
|
418 | * concurrent modifications took place.
|
419 | */
|
420 | Lease start_read() {
|
421 | detail::Waiter wait;
|
422 |
|
423 | // get a snapshot of the lease version
|
424 | auto v = version.load(std::memory_order_acquire);
|
425 |
|
426 | // spin while there is a write in progress
|
427 | while ((v & 0x1) == 1) {
|
428 | // wait for a moment
|
429 | wait();
|
430 | // get an updated version
|
431 | v = version.load(std::memory_order_acquire);
|
432 | }
|
433 |
|
434 | // done
|
435 | return Lease(v);
|
436 | }
|
437 |
|
438 | /**
|
439 | * Tests whether there have been concurrent modifications since
|
440 | * the given lease has been issued.
|
441 | *
|
442 | * @return true if no updates have been conducted, false otherwise
|
443 | */
|
444 | bool validate(const Lease& lease) {
|
445 | // check whether version number has changed in the mean-while
|
446 | std::atomic_thread_fence(std::memory_order_acquire);
|
447 | return lease.version == version.load(std::memory_order_relaxed);
|
448 | }
|
449 |
|
450 | /**
|
451 | * Ends a read phase by validating the given lease.
|
452 | *
|
453 | * @return true if no updates have been conducted since the
|
454 | * issuing of the lease, false otherwise
|
455 | */
|
456 | bool end_read(const Lease& lease) {
|
457 | // check lease in the end
|
458 | return validate(lease);
|
459 | }
|
460 |
|
461 | /**
|
462 | * Starts a write phase on this lock be ensuring exclusive access
|
463 | * and invalidating any existing read lease.
|
464 | */
|
465 | void start_write() {
|
466 | detail::Waiter wait;
|
467 |
|
468 | // set last bit => make it odd
|
469 | auto v = version.fetch_or(0x1, std::memory_order_acquire);
|
470 |
|
471 | // check for concurrent writes
|
472 | while ((v & 0x1) == 1) {
|
473 | // wait for a moment
|
474 | wait();
|
475 | // get an updated version
|
476 | v = version.fetch_or(0x1, std::memory_order_acquire);
|
477 | }
|
478 |
|
479 | // done
|
480 | }
|
481 |
|
482 | /**
|
483 | * Tries to start a write phase unless there is a currently ongoing
|
484 | * write operation. In this case no write permission will be obtained.
|
485 | *
|
486 | * @return true if write permission has been granted, false otherwise.
|
487 | */
|
488 | bool try_start_write() {
|
489 | auto v = version.fetch_or(0x1, std::memory_order_acquire);
|
490 | return !(v & 0x1);
|
491 | }
|
492 |
|
493 | /**
|
494 | * Updates a read-lease to a write permission by a) validating that the
|
495 | * given lease is still valid and b) making sure that there is no currently
|
496 | * ongoing write operation.
|
497 | *
|
498 | * @return true if the lease was still valid and write permissions could
|
499 | * be granted, false otherwise.
|
500 | */
|
501 | bool try_upgrade_to_write(const Lease& lease) {
|
502 | auto v = version.fetch_or(0x1, std::memory_order_acquire);
|
503 |
|
504 | // check whether write privileges have been gained
|
505 | if (v & 0x1) return false; // there is another writer already
|
506 |
|
507 | // check whether there was no write since the gain of the read lock
|
508 | if (lease.version == v) return true;
|
509 |
|
510 | // if there was, undo write update
|
511 | abort_write();
|
512 |
|
513 | // operation failed
|
514 | return false;
|
515 | }
|
516 |
|
517 | /**
|
518 | * Aborts a write operation by reverting to the version number before
|
519 | * starting the ongoing write, thereby re-validating existing leases.
|
520 | */
|
521 | void abort_write() {
|
522 | // reset version number
|
523 | version.fetch_sub(1, std::memory_order_release);
|
524 | }
|
525 |
|
526 | /**
|
527 | * Ends a write operation by giving up the associated exclusive access
|
528 | * to the protected data and abandoning the provided write permission.
|
529 | */
|
530 | void end_write() {
|
531 | // update version number another time
|
532 | version.fetch_add(1, std::memory_order_release);
|
533 | }
|
534 |
|
535 | /**
|
536 | * Tests whether currently write permissions have been granted to any
|
537 | * client by this lock.
|
538 | *
|
539 | * @return true if so, false otherwise
|
540 | */
|
541 | bool is_write_locked() const {
|
542 | return version & 0x1;
|
543 | }
|
544 | };
|
545 |
|
546 | /** Concurrent lanes locking mechanism. */
|
547 | struct MutexConcurrentLanes {
|
548 | using lane_id = std::size_t;
|
549 | using unique_lock_type = std::unique_lock<std::mutex>;
|
550 |
|
551 | explicit MutexConcurrentLanes(const std::size_t Sz) : Size(Sz), Attribution(attribution(Sz)) {
|
552 | Lanes = std::make_unique<Lane[]>(Sz);
|
553 | }
|
554 | MutexConcurrentLanes(const MutexConcurrentLanes&) = delete;
|
555 | MutexConcurrentLanes(MutexConcurrentLanes&&) = delete;
|
556 |
|
557 | virtual ~MutexConcurrentLanes() {}
|
558 |
|
559 | // Return the number of lanes.
|
560 | std::size_t lanes() const {
|
561 | return Size;
|
562 | }
|
563 |
|
564 | // Select a lane
|
565 | lane_id getLane(std::size_t I) const {
|
566 | if (Attribution == lane_attribution::mod_power_of_2) {
|
567 | return I & (Size - 1);
|
568 | } else {
|
569 | return I % Size;
|
570 | }
|
571 | }
|
572 |
|
573 | /** Change the number of lanes.
|
574 | * DO not use while threads are using this object.
|
575 | */
|
576 | void setNumLanes(const std::size_t NumLanes) {
|
577 | Size = (NumLanes == 0 ? 1 : NumLanes);
|
578 | Attribution = attribution(Size);
|
579 | Lanes = std::make_unique<Lane[]>(Size);
|
580 | }
|
581 |
|
582 | unique_lock_type guard(const lane_id Lane) const {
|
583 | return unique_lock_type(Lanes[Lane].Access);
|
584 | }
|
585 |
|
586 | // Lock the given lane.
|
587 | // Must eventually be followed by unlock(Lane).
|
588 | void lock(const lane_id Lane) const {
|
589 | Lanes[Lane].Access.lock();
|
590 | }
|
591 |
|
592 | // Unlock the given lane.
|
593 | // Must already be the owner of the lane's lock.
|
594 | void unlock(const lane_id Lane) const {
|
595 | Lanes[Lane].Access.unlock();
|
596 | }
|
597 |
|
598 | // Acquire the capability to lock all other lanes than the given one.
|
599 | //
|
600 | // Must eventually be followed by beforeUnlockAllBut(Lane).
|
601 | void beforeLockAllBut(const lane_id Lane) const {
|
602 | if (!BeforeLockAll.try_lock()) {
|
603 | // If we cannot get the lock immediately, it means it was acquired
|
604 | // concurrently by another lane that will also try to acquire our
|
605 | // lane lock.
|
606 | // So we release our lane lock to let the concurrent operation
|
607 | // progress.
|
608 | unlock(Lane);
|
609 | BeforeLockAll.lock();
|
610 | lock(Lane);
|
611 | }
|
612 | }
|
613 |
|
614 | // Release the capability to lock all other lanes than the given one.
|
615 | //
|
616 | // Must already be the owner of that capability.
|
617 | void beforeUnlockAllBut(const lane_id) const {
|
618 | BeforeLockAll.unlock();
|
619 | }
|
620 |
|
621 | // Lock all lanes but the given one.
|
622 | //
|
623 | // Must already have acquired the capability to lock all other lanes
|
624 | // by calling beforeLockAllBut(Lane).
|
625 | //
|
626 | // Must eventually be followed by unlockAllBut(Lane).
|
627 | void lockAllBut(const lane_id Lane) const {
|
628 | for (std::size_t I = 0; I < Size; ++I) {
|
629 | if (I != Lane) {
|
630 | Lanes[I].Access.lock();
|
631 | }
|
632 | }
|
633 | }
|
634 |
|
635 | // Unlock all lanes but the given one.
|
636 | // Must already be the owner of all the lanes' locks.
|
637 | void unlockAllBut(const lane_id Lane) const {
|
638 | for (std::size_t I = 0; I < Size; ++I) {
|
639 | if (I != Lane) {
|
640 | Lanes[I].Access.unlock();
|
641 | }
|
642 | }
|
643 | }
|
644 |
|
645 | private:
|
646 | enum lane_attribution { mod_power_of_2, mod_other };
|
647 |
|
648 | struct Lane {
|
649 | alignas(hardware_destructive_interference_size) std::mutex Access;
|
650 | };
|
651 |
|
652 | static constexpr lane_attribution attribution(const std::size_t Sz) {
|
653 | assert(Sz > 0);
|
654 | if ((Sz & (Sz - 1)) == 0) {
|
655 | // Sz is a power of 2
|
656 | return lane_attribution::mod_power_of_2;
|
657 | } else {
|
658 | return lane_attribution::mod_other;
|
659 | }
|
660 | }
|
661 |
|
662 | protected:
|
663 | std::size_t Size;
|
664 | lane_attribution Attribution;
|
665 |
|
666 | private:
|
667 | mutable std::unique_ptr<Lane[]> Lanes;
|
668 |
|
669 | alignas(hardware_destructive_interference_size) mutable std::mutex BeforeLockAll;
|
670 | };
|
671 |
|
672 | class ConcurrentLanes : public MutexConcurrentLanes {
|
673 | using Base = MutexConcurrentLanes;
|
674 |
|
675 | public:
|
676 | using lane_id = Base::lane_id;
|
677 | using Base::beforeLockAllBut;
|
678 | using Base::beforeUnlockAllBut;
|
679 | using Base::guard;
|
680 | using Base::lock;
|
681 | using Base::lockAllBut;
|
682 | using Base::unlock;
|
683 | using Base::unlockAllBut;
|
684 |
|
685 | explicit ConcurrentLanes(const std::size_t Sz) : MutexConcurrentLanes(Sz) {}
|
686 | ConcurrentLanes(const ConcurrentLanes&) = delete;
|
687 | ConcurrentLanes(ConcurrentLanes&&) = delete;
|
688 |
|
689 | lane_id threadLane() const {
|
690 | return getLane(static_cast<std::size_t>(omp_get_thread_num()));
|
691 | }
|
692 |
|
693 | void setNumLanes(const std::size_t NumLanes) {
|
694 | Base::setNumLanes(NumLanes == 0 ? omp_get_max_threads() : NumLanes);
|
695 | }
|
696 |
|
697 | unique_lock_type guard() const {
|
698 | return Base::guard(threadLane());
|
699 | }
|
700 |
|
701 | void lock() const {
|
702 | return Base::lock(threadLane());
|
703 | }
|
704 |
|
705 | void unlock() const {
|
706 | return Base::unlock(threadLane());
|
707 | }
|
708 |
|
709 | void beforeLockAllBut() const {
|
710 | return Base::beforeLockAllBut(threadLane());
|
711 | }
|
712 |
|
713 | void beforeUnlockAllBut() const {
|
714 | return Base::beforeUnlockAllBut(threadLane());
|
715 | }
|
716 |
|
717 | void lockAllBut() const {
|
718 | return Base::lockAllBut(threadLane());
|
719 | }
|
720 |
|
721 | void unlockAllBut() const {
|
722 | return Base::unlockAllBut(threadLane());
|
723 | }
|
724 | };
|
725 |
|
726 | #else
|
727 |
|
728 | /**
|
729 | * A small utility class for implementing simple locks.
|
730 | */
|
731 | struct Lock {
|
732 | class Lease {};
|
733 |
|
734 | // no locking if there is no parallel execution
|
735 | Lease acquire() {
|
736 | return Lease();
|
737 | }
|
738 |
|
739 | void lock() {}
|
740 |
|
741 | bool try_lock() {
|
742 | return true;
|
743 | }
|
744 |
|
745 | void unlock() {}
|
746 | };
|
747 |
|
748 | /**
|
749 | * A 'sequential' non-locking implementation for a spin lock.
|
750 | */
|
751 | class SpinLock {
|
752 | public:
|
753 | SpinLock() = default;
|
754 |
|
755 | void lock() {}
|
756 |
|
757 | bool try_lock() {
|
758 | return true;
|
759 | }
|
760 |
|
761 | void unlock() {}
|
762 | };
|
763 |
|
764 | class ReadWriteLock {
|
765 | public:
|
766 | ReadWriteLock() = default;
|
767 |
|
768 | void start_read() {}
|
769 |
|
770 | void end_read() {}
|
771 |
|
772 | void start_write() {}
|
773 |
|
774 | bool try_write() {
|
775 | return true;
|
776 | }
|
777 |
|
778 | void end_write() {}
|
779 |
|
780 | bool try_upgrade_to_write() {
|
781 | return true;
|
782 | }
|
783 |
|
784 | void downgrade_to_read() {}
|
785 | };
|
786 |
|
787 | /**
|
788 | * A 'sequential' non-locking implementation for an optimistic r/w lock.
|
789 | */
|
790 | class OptimisticReadWriteLock {
|
791 | public:
|
792 | class Lease {};
|
793 |
|
794 | OptimisticReadWriteLock() = default;
|
795 |
|
796 | Lease start_read() {
|
797 | return Lease();
|
798 | }
|
799 |
|
800 | bool validate(const Lease& /*lease*/) {
|
801 | return true;
|
802 | }
|
803 |
|
804 | bool end_read(const Lease& /*lease*/) {
|
805 | return true;
|
806 | }
|
807 |
|
808 | void start_write() {}
|
809 |
|
810 | bool try_start_write() {
|
811 | return true;
|
812 | }
|
813 |
|
814 | bool try_upgrade_to_write(const Lease& /*lease*/) {
|
815 | return true;
|
816 | }
|
817 |
|
818 | void abort_write() {}
|
819 |
|
820 | void end_write() {}
|
821 |
|
822 | bool is_write_locked() const {
|
823 | return true;
|
824 | }
|
825 | };
|
826 |
|
827 | struct ConcurrentLanes : protected SeqConcurrentLanes {
|
828 | using Base = SeqConcurrentLanes;
|
829 | using lane_id = SeqConcurrentLanes::lane_id;
|
830 | using unique_lock_type = SeqConcurrentLanes::unique_lock_type;
|
831 |
|
832 | using Base::lanes;
|
833 | using Base::setNumLanes;
|
834 |
|
835 | explicit ConcurrentLanes(std::size_t Sz = MAX_THREADS) : Base(Sz) {}
|
836 | ConcurrentLanes(const ConcurrentLanes&) = delete;
|
837 | ConcurrentLanes(ConcurrentLanes&&) = delete;
|
838 |
|
839 | virtual ~ConcurrentLanes() {}
|
840 |
|
841 | lane_id threadLane() const {
|
842 | return 0;
|
843 | }
|
844 |
|
845 | unique_lock_type guard() const {
|
846 | return Base::guard(threadLane());
|
847 | }
|
848 |
|
849 | void lock() const {
|
850 | return Base::lock(threadLane());
|
851 | }
|
852 |
|
853 | void unlock() const {
|
854 | return Base::unlock(threadLane());
|
855 | }
|
856 |
|
857 | void beforeLockAllBut() const {
|
858 | return Base::beforeLockAllBut(threadLane());
|
859 | }
|
860 |
|
861 | void beforeUnlockAllBut() const {
|
862 | return Base::beforeUnlockAllBut(threadLane());
|
863 | }
|
864 |
|
865 | void lockAllBut() const {
|
866 | return Base::lockAllBut(threadLane());
|
867 | }
|
868 |
|
869 | void unlockAllBut() const {
|
870 | return Base::unlockAllBut(threadLane());
|
871 | }
|
872 | };
|
873 |
|
874 | #endif
|
875 |
|
876 | /**
|
877 | * Obtains a reference to the lock synchronizing output operations.
|
878 | */
|
879 | inline Lock& getOutputLock() {
|
880 | static Lock outputLock;
|
881 | return outputLock;
|
882 | }
|
883 |
|
884 | } // namespace souffle
|