| 1 | // small_str_test.cc - Demo for new Str implementation
|
| 2 |
|
| 3 | #include <inttypes.h>
|
| 4 | #include <limits.h> // HOST_NAME_MAX
|
| 5 | #include <unistd.h> // gethostname()
|
| 6 |
|
| 7 | #include <new> // placement new
|
| 8 |
|
| 9 | // #include "mycpp/runtime.h"
|
| 10 | #include "mycpp/common.h"
|
| 11 | #include "mycpp/gc_obj.h" // ObjHeader
|
| 12 | #include "vendor/greatest.h"
|
| 13 |
|
| 14 | namespace small_str_test {
|
| 15 |
|
| 16 | //
|
| 17 | // STRING IMPLEMENTATION
|
| 18 | //
|
| 19 |
|
| 20 | // SmallStr is used as a VALUE
|
| 21 |
|
| 22 | const int kSmallStrThreshold = 6;
|
| 23 | const int kSmallStrInvalidLength = 0b1111;
|
| 24 |
|
| 25 | // Layout compatible with SmallStr, and globally initialized
|
| 26 | struct GlobalSmallStr {
|
| 27 | unsigned is_present_ : 1; // reserved
|
| 28 | unsigned pad_ : 3;
|
| 29 | unsigned length_ : 4; // max string length is 6
|
| 30 |
|
| 31 | char data_[7]; // NUL-terminated C string
|
| 32 | };
|
| 33 |
|
| 34 | // SmallStr is an 8-byte value type (even on 32-bit machines)
|
| 35 | class SmallStr {
|
| 36 | public:
|
| 37 | SmallStr(int n) : is_present_(1), pad_(0), length_(n), data_{0} {
|
| 38 | }
|
| 39 |
|
| 40 | unsigned is_present_ : 1; // reserved
|
| 41 | unsigned pad_ : 3;
|
| 42 | unsigned length_ : 4; // 0 to 6 bytes of data payload
|
| 43 |
|
| 44 | char data_[7];
|
| 45 | };
|
| 46 |
|
| 47 | // HeapStr is used as POINTER
|
| 48 |
|
| 49 | class HeapStr {
|
| 50 | public:
|
| 51 | HeapStr() {
|
| 52 | }
|
| 53 | int Length() {
|
| 54 | #ifdef MARK_SWEEP
|
| 55 | return header_.u_mask_npointers;
|
| 56 | #elif BUMP_LEAK
|
| 57 | #error "TODO: add field to HeapStr"
|
| 58 | #else
|
| 59 | // derive string length from GC object length
|
| 60 | return header.obj_len - kStrHeaderSize - 1;
|
| 61 | #endif
|
| 62 | }
|
| 63 | void SetLength(int len) {
|
| 64 | // Important invariant that makes str_equals() simpler: "abc" in a HeapStr
|
| 65 | // is INVALID.
|
| 66 | assert(len > kSmallStrThreshold);
|
| 67 |
|
| 68 | #ifdef MARK_SWEEP
|
| 69 | header_.u_mask_npointers = len;
|
| 70 | #elif BUMP_LEAK
|
| 71 | #error "TODO: add field to HeapStr"
|
| 72 | #else
|
| 73 | // set object length, which can derive string length
|
| 74 | header.obj_len = kStrHeaderSize + len + 1; // +1 for
|
| 75 | #endif
|
| 76 | }
|
| 77 |
|
| 78 | static constexpr ObjHeader obj_header() {
|
| 79 | return ObjHeader::BigStr();
|
| 80 | }
|
| 81 |
|
| 82 | ObjHeader header_;
|
| 83 | char data_[1];
|
| 84 | };
|
| 85 |
|
| 86 | constexpr int kStrHeaderSize = offsetof(HeapStr, data_);
|
| 87 |
|
| 88 | // AllocHeapStr() is a helper that allocates a HeapStr but doesn't set its
|
| 89 | // length. It's NOT part of the public API; use NewStr() instead
|
| 90 | static HeapStr* AllocHeapStr(int n) {
|
| 91 | void* place = malloc(kStrHeaderSize + n + 1); // +1 for NUL terminator
|
| 92 | return new (place) HeapStr();
|
| 93 | }
|
| 94 |
|
| 95 | // Str is a value type that can be small or big!
|
| 96 | union Str {
|
| 97 | // small_ is the whole 8 bytes
|
| 98 | Str(SmallStr small) : small_(small) {
|
| 99 | }
|
| 100 | // big_ may be 4 bytes, so we need raw_bytes_ first
|
| 101 | Str(HeapStr* big) : raw_bytes_(0) {
|
| 102 | big_ = big;
|
| 103 | }
|
| 104 |
|
| 105 | bool IsSmall() {
|
| 106 | return small_.is_present_;
|
| 107 | }
|
| 108 |
|
| 109 | // Returns a NUL-terminated C string, like std::string::c_str()
|
| 110 | char* c_str() {
|
| 111 | if (small_.is_present_) {
|
| 112 | return small_.data_;
|
| 113 | } else {
|
| 114 | return big_->data_;
|
| 115 | }
|
| 116 | }
|
| 117 |
|
| 118 | // Mutate in place, like OverAllocatedStr then SetObjLenFromStrLen()
|
| 119 | // Assumes the caller already NUL-terminate the string to this length!
|
| 120 | // e.g. read(), snprintf
|
| 121 | void MaybeShrink(int new_len) {
|
| 122 | if (new_len <= kSmallStrThreshold) {
|
| 123 | if (small_.is_present_) { // It's already small, just set length
|
| 124 |
|
| 125 | // Callers like strftime() should have NUL-terminated it!
|
| 126 | assert(small_.data_[new_len] == '\0');
|
| 127 |
|
| 128 | small_.length_ = new_len;
|
| 129 |
|
| 130 | } else { // Shrink from big to small
|
| 131 | HeapStr* copy_of_big = big_; // Important!
|
| 132 |
|
| 133 | raw_bytes_ = 0; // maintain invariants for fast str_equals()
|
| 134 | small_.is_present_ = 1;
|
| 135 | memcpy(small_.data_, copy_of_big->data_, new_len);
|
| 136 | small_.data_[new_len] = '\0'; // NUL terminate
|
| 137 | }
|
| 138 | } else { // It's already bit, set length
|
| 139 | // OverAllocatedStr always starts with a big string
|
| 140 | assert(!small_.is_present_);
|
| 141 |
|
| 142 | // Callers like strftime() should have NUL-terminated it!
|
| 143 | assert(big_->data_[new_len] == '\0');
|
| 144 |
|
| 145 | big_->SetLength(new_len);
|
| 146 | }
|
| 147 | }
|
| 148 |
|
| 149 | void CopyTo(char* dest) {
|
| 150 | char* src;
|
| 151 | int n;
|
| 152 | if (small_.is_present_) {
|
| 153 | src = small_.data_;
|
| 154 | n = small_.length_;
|
| 155 | } else {
|
| 156 | src = big_->data_;
|
| 157 | n = big_->Length();
|
| 158 | }
|
| 159 | memcpy(dest, src, n);
|
| 160 | }
|
| 161 |
|
| 162 | Str upper() {
|
| 163 | if (small_.is_present_) {
|
| 164 | // Mutate
|
| 165 | for (int i = 0; i < small_.length_; ++i) {
|
| 166 | small_.data_[i] = toupper(small_.data_[i]);
|
| 167 | }
|
| 168 | return Str(small_); // return a copy BY VALUE
|
| 169 | } else {
|
| 170 | int n = big_->Length();
|
| 171 | HeapStr* result = AllocHeapStr(n);
|
| 172 |
|
| 173 | for (int i = 0; i < n; ++i) {
|
| 174 | result->data_[i] = toupper(big_->data_[i]);
|
| 175 | }
|
| 176 | result->data_[n] = '\0';
|
| 177 | result->SetLength(n);
|
| 178 |
|
| 179 | return Str(result);
|
| 180 | }
|
| 181 | }
|
| 182 |
|
| 183 | uint64_t raw_bytes_;
|
| 184 | SmallStr small_;
|
| 185 | HeapStr* big_;
|
| 186 | };
|
| 187 |
|
| 188 | // Invariants affecting Str equality
|
| 189 | //
|
| 190 | // 1. The contents of Str are normalized
|
| 191 | // - SmallStr: the bytes past the NUL terminator are zero-initialized.
|
| 192 | // - HeapStr*: if sizeof(HeapStr*) == 4, then the rest of the bytes are
|
| 193 | // zero-initialized.
|
| 194 | //
|
| 195 | // 2. If len(s) <= kSmallStrThreshold, then s.IsSmall()
|
| 196 | // Conversely, If len(s) > kSmallStrThreshold, then NOT s.IsSmall()
|
| 197 | //
|
| 198 | // This is enforced by the fact that all strings are created by:
|
| 199 | //
|
| 200 | // 1. StrFromC()
|
| 201 | // 2. OverAllocatedStr(), then MaybeShrink()
|
| 202 | // 3. Str:: methods that use the above functions, or NewStr()
|
| 203 |
|
| 204 | bool str_equals(Str a, Str b) {
|
| 205 | // Fast path takes care of two cases: Identical small strings, or identical
|
| 206 | // pointers to big strings!
|
| 207 | if (a.raw_bytes_ == b.raw_bytes_) {
|
| 208 | return true;
|
| 209 | }
|
| 210 |
|
| 211 | bool a_small = a.IsSmall();
|
| 212 | bool b_small = b.IsSmall();
|
| 213 |
|
| 214 | // Str instances are normalized so a SmallStr can't equal a HeapStr*
|
| 215 | if (a_small != b_small) {
|
| 216 | return false;
|
| 217 | }
|
| 218 |
|
| 219 | // Both are small, and we already failed the fast path
|
| 220 | if (a_small) {
|
| 221 | return false;
|
| 222 | }
|
| 223 |
|
| 224 | // Both are big
|
| 225 | int a_len = a.big_->Length();
|
| 226 | int b_len = b.big_->Length();
|
| 227 |
|
| 228 | if (a_len != b_len) {
|
| 229 | return false;
|
| 230 | }
|
| 231 |
|
| 232 | return memcmp(a.big_->data_, b.big_->data_, a_len) == 0;
|
| 233 | }
|
| 234 |
|
| 235 | #define G_SMALL_STR(name, s, small_len) \
|
| 236 | GlobalSmallStr _##name = {1, 0, small_len, s}; \
|
| 237 | Str name = *(reinterpret_cast<Str*>(&_##name));
|
| 238 |
|
| 239 | G_SMALL_STR(kEmptyString, "", 0);
|
| 240 |
|
| 241 | G_SMALL_STR(gSmall, "global", 6);
|
| 242 |
|
| 243 | Str NewStr(int n) {
|
| 244 | if (n <= kSmallStrThreshold) {
|
| 245 | SmallStr small(n);
|
| 246 | return Str(small);
|
| 247 | } else {
|
| 248 | HeapStr* big = AllocHeapStr(n);
|
| 249 | big->SetLength(n);
|
| 250 | return Str(big);
|
| 251 | }
|
| 252 | }
|
| 253 |
|
| 254 | // NOTE: must call MaybeShrink(n) afterward to set length! Should it NUL
|
| 255 | // terminate?
|
| 256 | Str OverAllocatedStr(int n) {
|
| 257 | // There's no point in overallocating small strings
|
| 258 | assert(n > kSmallStrThreshold);
|
| 259 |
|
| 260 | HeapStr* big = AllocHeapStr(n);
|
| 261 | // Not setting length!
|
| 262 | return Str(big);
|
| 263 | }
|
| 264 |
|
| 265 | Str StrFromC(const char* s, int n) {
|
| 266 | if (n <= kSmallStrThreshold) {
|
| 267 | SmallStr small(n);
|
| 268 | memcpy(small.data_, s, n + 1); // copy NUL terminator too
|
| 269 | return Str(small);
|
| 270 | } else {
|
| 271 | HeapStr* big = AllocHeapStr(n);
|
| 272 | memcpy(big->data_, s, n + 1); // copy NUL terminator too
|
| 273 | big->SetLength(n);
|
| 274 | return Str(big);
|
| 275 | }
|
| 276 | }
|
| 277 |
|
| 278 | Str StrFromC(const char* s) {
|
| 279 | return StrFromC(s, strlen(s));
|
| 280 | }
|
| 281 |
|
| 282 | int len(Str s) {
|
| 283 | if (s.small_.is_present_) {
|
| 284 | return s.small_.length_;
|
| 285 | } else {
|
| 286 | return s.big_->Length();
|
| 287 | }
|
| 288 | }
|
| 289 |
|
| 290 | Str str_concat(Str a, Str b) {
|
| 291 | int a_len = len(a);
|
| 292 | int b_len = len(b);
|
| 293 | int new_len = a_len + b_len;
|
| 294 |
|
| 295 | // Create both on the stack so we can share the logic
|
| 296 | HeapStr* big;
|
| 297 | SmallStr small(kSmallStrInvalidLength);
|
| 298 |
|
| 299 | char* dest;
|
| 300 |
|
| 301 | if (new_len <= kSmallStrThreshold) {
|
| 302 | dest = small.data_;
|
| 303 | small.length_ = new_len;
|
| 304 | } else {
|
| 305 | big = AllocHeapStr(new_len);
|
| 306 |
|
| 307 | dest = big->data_;
|
| 308 | big->SetLength(new_len);
|
| 309 | }
|
| 310 |
|
| 311 | a.CopyTo(dest);
|
| 312 | dest += a_len;
|
| 313 |
|
| 314 | b.CopyTo(dest);
|
| 315 | dest += b_len;
|
| 316 |
|
| 317 | *dest = '\0';
|
| 318 |
|
| 319 | if (new_len <= kSmallStrThreshold) {
|
| 320 | return Str(small);
|
| 321 | } else {
|
| 322 | return Str(big);
|
| 323 | }
|
| 324 | }
|
| 325 |
|
| 326 | static_assert(sizeof(SmallStr) == 8, "SmallStr should be 8 bytes");
|
| 327 | static_assert(sizeof(Str) == 8, "Str should be 8 bytes");
|
| 328 |
|
| 329 | TEST small_str_test() {
|
| 330 | log("sizeof(Str) = %d", sizeof(Str));
|
| 331 | log("sizeof(SmallStr) = %d", sizeof(SmallStr));
|
| 332 | log("sizeof(HeapStr*) = %d", sizeof(HeapStr*));
|
| 333 |
|
| 334 | log("");
|
| 335 | log("---- SmallStrFromC() / StrFromC() / global G_SMALL_STR() ---- ");
|
| 336 | log("");
|
| 337 |
|
| 338 | log("gSmall = %s", gSmall.small_.data_);
|
| 339 |
|
| 340 | // Str s { 1, 0, 3, "foo" };
|
| 341 | SmallStr local_small(0);
|
| 342 | ASSERT(local_small.is_present_);
|
| 343 |
|
| 344 | // It just has 1 bit set
|
| 345 | log("local_small as integer %d", local_small);
|
| 346 | log("local_small = %s", local_small.data_);
|
| 347 |
|
| 348 | Str local_s = StrFromC("little");
|
| 349 | ASSERT(local_s.IsSmall());
|
| 350 | log("local_s = %s", local_s.small_.data_);
|
| 351 |
|
| 352 | Str local_big = StrFromC("big long string");
|
| 353 | ASSERT(!local_big.IsSmall());
|
| 354 |
|
| 355 | log("");
|
| 356 | log("---- c_str() ---- ");
|
| 357 | log("");
|
| 358 |
|
| 359 | log("gSmall = %s %d", gSmall.c_str(), len(gSmall));
|
| 360 | log("local_small = %s %d", local_s.c_str(), len(local_s));
|
| 361 | log("local_big = %s %d", local_big.c_str(), len(local_big));
|
| 362 |
|
| 363 | log("");
|
| 364 | log("---- Str_upper() ---- ");
|
| 365 | log("");
|
| 366 |
|
| 367 | Str u1 = local_s.upper();
|
| 368 | ASSERT(u1.IsSmall());
|
| 369 |
|
| 370 | Str u2 = gSmall.upper();
|
| 371 | ASSERT(u2.IsSmall());
|
| 372 |
|
| 373 | Str u3 = local_big.upper();
|
| 374 | ASSERT(!u3.IsSmall());
|
| 375 |
|
| 376 | log("local_small = %s %d", u1.c_str(), len(u1));
|
| 377 | log("gSmall = %s %d", u2.c_str(), len(u2));
|
| 378 | log("local_big = %s %d", u3.c_str(), len(u3));
|
| 379 |
|
| 380 | log("");
|
| 381 | log("---- NewStr() ---- ");
|
| 382 | log("");
|
| 383 |
|
| 384 | Str small_empty = NewStr(6);
|
| 385 | ASSERT(small_empty.IsSmall());
|
| 386 | ASSERT_EQ(6, len(small_empty));
|
| 387 |
|
| 388 | Str big_empty = NewStr(7);
|
| 389 | ASSERT(!big_empty.IsSmall());
|
| 390 | ASSERT_EQ_FMT(7, len(big_empty), "%d");
|
| 391 |
|
| 392 | log("");
|
| 393 | log("---- str_concat() ---- ");
|
| 394 | log("");
|
| 395 |
|
| 396 | Str empty_empty = str_concat(kEmptyString, kEmptyString);
|
| 397 | ASSERT(empty_empty.IsSmall());
|
| 398 | log("empty_empty (%d) = %s", len(empty_empty), empty_empty.c_str());
|
| 399 |
|
| 400 | Str empty_small = str_concat(kEmptyString, StrFromC("b"));
|
| 401 | ASSERT(empty_small.IsSmall());
|
| 402 | log("empty_small (%d) = %s", len(empty_small), empty_small.c_str());
|
| 403 |
|
| 404 | Str small_small = str_concat(StrFromC("a"), StrFromC("b"));
|
| 405 | ASSERT(small_small.IsSmall());
|
| 406 | log("small_small (%d) %s", len(small_small), small_small.c_str());
|
| 407 |
|
| 408 | Str small_big = str_concat(StrFromC("small"), StrFromC("big string"));
|
| 409 | ASSERT(!small_big.IsSmall());
|
| 410 | log("small_big (%d) %s", len(small_big), small_big.c_str());
|
| 411 |
|
| 412 | Str big_small = str_concat(StrFromC("big string"), StrFromC("small"));
|
| 413 | ASSERT(!big_small.IsSmall());
|
| 414 | log("big_small (%d) %s", len(big_small), big_small.c_str());
|
| 415 |
|
| 416 | Str big_big = str_concat(StrFromC("abcdefghij"), StrFromC("0123456789"));
|
| 417 | ASSERT(!big_big.IsSmall());
|
| 418 | log("big_big (%d) = %s ", len(big_big), big_big.c_str());
|
| 419 |
|
| 420 | log("");
|
| 421 | log("---- str_equals() ---- ");
|
| 422 | log("");
|
| 423 |
|
| 424 | ASSERT(str_equals(kEmptyString, StrFromC("")));
|
| 425 | ASSERT(str_equals(kEmptyString, NewStr(0)));
|
| 426 |
|
| 427 | // small vs. small
|
| 428 | ASSERT(!str_equals(kEmptyString, StrFromC("a")));
|
| 429 |
|
| 430 | ASSERT(str_equals(StrFromC("a"), StrFromC("a")));
|
| 431 | ASSERT(!str_equals(StrFromC("a"), StrFromC("b"))); // same length
|
| 432 | ASSERT(!str_equals(StrFromC("a"), StrFromC("two"))); // different length
|
| 433 |
|
| 434 | // small vs. big
|
| 435 | ASSERT(!str_equals(StrFromC("small"), StrFromC("big string")));
|
| 436 | ASSERT(!str_equals(StrFromC("big string"), StrFromC("small")));
|
| 437 |
|
| 438 | // big vs. big
|
| 439 | ASSERT(str_equals(StrFromC("big string"), StrFromC("big string")));
|
| 440 | ASSERT(!str_equals(StrFromC("big string"), StrFromC("big strinZ")));
|
| 441 | ASSERT(!str_equals(StrFromC("big string"), StrFromC("longer string")));
|
| 442 |
|
| 443 | // TODO:
|
| 444 | log("");
|
| 445 | log("---- OverAllocatedStr() ---- ");
|
| 446 | log("");
|
| 447 |
|
| 448 | Str hostname = OverAllocatedStr(HOST_NAME_MAX);
|
| 449 | int status = ::gethostname(hostname.big_->data_, HOST_NAME_MAX);
|
| 450 | if (status != 0) {
|
| 451 | assert(0);
|
| 452 | }
|
| 453 | hostname.MaybeShrink(strlen(hostname.big_->data_));
|
| 454 |
|
| 455 | log("hostname = %s", hostname.c_str());
|
| 456 |
|
| 457 | time_t ts = 0;
|
| 458 | tm* loc_time = ::localtime(&ts);
|
| 459 |
|
| 460 | const int max_len = 1024;
|
| 461 | Str t1 = OverAllocatedStr(max_len);
|
| 462 |
|
| 463 | int n = strftime(t1.big_->data_, max_len, "%Y-%m-%d", loc_time);
|
| 464 | if (n == 0) { // exceeds max length
|
| 465 | assert(0);
|
| 466 | }
|
| 467 | t1.MaybeShrink(n);
|
| 468 |
|
| 469 | log("t1 = %s", t1.c_str());
|
| 470 |
|
| 471 | Str t2 = OverAllocatedStr(max_len);
|
| 472 | n = strftime(t2.big_->data_, max_len, "%Y", loc_time);
|
| 473 | if (n == 0) { // exceeds max length
|
| 474 | assert(0);
|
| 475 | }
|
| 476 | t2.MaybeShrink(n);
|
| 477 |
|
| 478 | log("t2 = %s", t2.c_str());
|
| 479 |
|
| 480 | // TODO:
|
| 481 | // BufWriter (rename StrWriter, and uses MutableHeapStr ?)
|
| 482 | // writer.getvalue(); // may copy into data_
|
| 483 |
|
| 484 | PASS();
|
| 485 | }
|
| 486 |
|
| 487 | } // namespace small_str_test
|
| 488 |
|
| 489 | GREATEST_MAIN_DEFS();
|
| 490 |
|
| 491 | int main(int argc, char** argv) {
|
| 492 | // gHeap.Init();
|
| 493 |
|
| 494 | GREATEST_MAIN_BEGIN();
|
| 495 |
|
| 496 | RUN_TEST(small_str_test::small_str_test);
|
| 497 |
|
| 498 | // gHeap.CleanProcessExit();
|
| 499 |
|
| 500 | GREATEST_MAIN_END();
|
| 501 | return 0;
|
| 502 | }
|