| 1 | #ifndef MYCPP_GC_LIST_H
 | 
| 2 | #define MYCPP_GC_LIST_H
 | 
| 3 | 
 | 
| 4 | #include <string.h>  // memcpy
 | 
| 5 | 
 | 
| 6 | #include <algorithm>  // sort() is templated
 | 
| 7 | 
 | 
| 8 | #include "mycpp/common.h"  // DCHECK
 | 
| 9 | #include "mycpp/comparators.h"
 | 
| 10 | #include "mycpp/gc_alloc.h"     // Alloc
 | 
| 11 | #include "mycpp/gc_builtins.h"  // ValueError
 | 
| 12 | #include "mycpp/gc_mops.h"      // BigInt
 | 
| 13 | #include "mycpp/gc_slab.h"
 | 
| 14 | 
 | 
| 15 | // GlobalList is layout-compatible with List (unit tests assert this), and it
 | 
| 16 | // can be a true C global (incurs zero startup time)
 | 
| 17 | 
 | 
| 18 | template <typename T, int N>
 | 
| 19 | class GlobalList {
 | 
| 20 |  public:
 | 
| 21 |   int len_;
 | 
| 22 |   int capacity_;
 | 
| 23 |   GlobalSlab<T, N>* slab_;
 | 
| 24 | };
 | 
| 25 | 
 | 
| 26 | #define GLOBAL_LIST(name, T, N, array)                                         \
 | 
| 27 |   GcGlobal<GlobalSlab<T, N>> _slab_##name = {ObjHeader::Global(TypeTag::Slab), \
 | 
| 28 |                                              {.items_ = array}};               \
 | 
| 29 |   GcGlobal<GlobalList<T, N>> _list_##name = {                                  \
 | 
| 30 |       ObjHeader::Global(TypeTag::List),                                        \
 | 
| 31 |       {.len_ = N, .capacity_ = N, .slab_ = &_slab_##name.obj}};                \
 | 
| 32 |   List<T>* name = reinterpret_cast<List<T>*>(&_list_##name.obj);
 | 
| 33 | 
 | 
| 34 | template <typename T>
 | 
| 35 | class List {
 | 
| 36 |  public:
 | 
| 37 |   List() : len_(0), capacity_(0), slab_(nullptr) {
 | 
| 38 |   }
 | 
| 39 | 
 | 
| 40 |   // Implements L[i]
 | 
| 41 |   T at(int i);
 | 
| 42 | 
 | 
| 43 |   // returns index of the element
 | 
| 44 |   int index(T element);
 | 
| 45 | 
 | 
| 46 |   // Implements L[i] = item
 | 
| 47 |   void set(int i, T item);
 | 
| 48 | 
 | 
| 49 |   // L[begin:]
 | 
| 50 |   List* slice(int begin);
 | 
| 51 | 
 | 
| 52 |   // L[begin:end]
 | 
| 53 |   List* slice(int begin, int end);
 | 
| 54 | 
 | 
| 55 |   // Should we have a separate API that doesn't return it?
 | 
| 56 |   // https://stackoverflow.com/questions/12600330/pop-back-return-value
 | 
| 57 |   T pop();
 | 
| 58 | 
 | 
| 59 |   // Used in osh/word_parse.py to remove from front
 | 
| 60 |   T pop(int i);
 | 
| 61 | 
 | 
| 62 |   // Remove the first occourence of x from the list.
 | 
| 63 |   void remove(T x);
 | 
| 64 | 
 | 
| 65 |   void clear();
 | 
| 66 | 
 | 
| 67 |   // Used in osh/string_ops.py
 | 
| 68 |   void reverse();
 | 
| 69 | 
 | 
| 70 |   // Templated function
 | 
| 71 |   void sort();
 | 
| 72 | 
 | 
| 73 |   // Ensure that there's space for at LEAST this many items
 | 
| 74 |   void reserve(int num_desired);
 | 
| 75 | 
 | 
| 76 |   // Append a single element to this list.
 | 
| 77 |   void append(T item);
 | 
| 78 | 
 | 
| 79 |   // Extend this list with multiple elements.
 | 
| 80 |   void extend(List<T>* other);
 | 
| 81 | 
 | 
| 82 |   static constexpr ObjHeader obj_header() {
 | 
| 83 |     return ObjHeader::ClassFixed(field_mask(), sizeof(List<T>));
 | 
| 84 |   }
 | 
| 85 | 
 | 
| 86 |   int len_;       // number of entries
 | 
| 87 |   int capacity_;  // max entries before resizing
 | 
| 88 | 
 | 
| 89 |   // The container may be resized, so this field isn't in-line.
 | 
| 90 |   Slab<T>* slab_;
 | 
| 91 | 
 | 
| 92 |   // A list has one Slab pointer which we need to follow.
 | 
| 93 |   static constexpr uint32_t field_mask() {
 | 
| 94 |     return maskbit(offsetof(List, slab_));
 | 
| 95 |   }
 | 
| 96 | 
 | 
| 97 |   DISALLOW_COPY_AND_ASSIGN(List)
 | 
| 98 | 
 | 
| 99 |   static_assert(sizeof(ObjHeader) % sizeof(T) == 0,
 | 
| 100 |                 "ObjHeader size should be multiple of item size");
 | 
| 101 |   static constexpr int kHeaderFudge = sizeof(ObjHeader) / sizeof(T);
 | 
| 102 | 
 | 
| 103 | #if 0
 | 
| 104 |   // 24-byte pool comes from very common List header, and Token
 | 
| 105 |   static constexpr int kPoolBytes1 = 24 - sizeof(ObjHeader);
 | 
| 106 |   static_assert(kPoolBytes1 % sizeof(T) == 0,
 | 
| 107 |                 "An integral number of items should fit in first pool");
 | 
| 108 |   static constexpr int kNumItems1 = kPoolBytes1 / sizeof(T);
 | 
| 109 | #endif
 | 
| 110 | 
 | 
| 111 |   // Matches mark_sweep_heap.h
 | 
| 112 |   static constexpr int kPoolBytes2 = 48 - sizeof(ObjHeader);
 | 
| 113 |   static_assert(kPoolBytes2 % sizeof(T) == 0,
 | 
| 114 |                 "An integral number of items should fit in second pool");
 | 
| 115 |   static constexpr int kNumItems2 = kPoolBytes2 / sizeof(T);
 | 
| 116 | 
 | 
| 117 | #if 0
 | 
| 118 |   static constexpr int kMinBytes2 = 128 - sizeof(ObjHeader);
 | 
| 119 |   static_assert(kMinBytes2 % sizeof(T) == 0,
 | 
| 120 |                 "An integral number of items should fit");
 | 
| 121 |   static constexpr int kMinItems2 = kMinBytes2 / sizeof(T);
 | 
| 122 | #endif
 | 
| 123 | 
 | 
| 124 |   // Given the number of items desired, return the number items we should
 | 
| 125 |   // reserve room for, according to our growth policy.
 | 
| 126 |   int HowManyItems(int num_desired) {
 | 
| 127 |     // Using the 24-byte pool leads to too much GC of tiny slab objects!  So
 | 
| 128 |     // just use the larger 48 byte pool.
 | 
| 129 | #if 0
 | 
| 130 |     if (num_desired <= kNumItems1) {  // use full cell in pool 1
 | 
| 131 |       return kNumItems1;
 | 
| 132 |     }
 | 
| 133 | #endif
 | 
| 134 |     if (num_desired <= kNumItems2) {  // use full cell in pool 2
 | 
| 135 |       return kNumItems2;
 | 
| 136 |     }
 | 
| 137 | #if 0
 | 
| 138 |     if (num_desired <= kMinItems2) {  // 48 -> 128, not 48 -> 64
 | 
| 139 |       return kMinItems2;
 | 
| 140 |     }
 | 
| 141 | #endif
 | 
| 142 | 
 | 
| 143 |     // Make sure the total allocation is a power of 2.  TODO: consider using
 | 
| 144 |     // slightly less than power of 2, to account for malloc() headers, and
 | 
| 145 |     // reduce fragmentation.
 | 
| 146 |     // Example:
 | 
| 147 |     // - ask for 11 integers
 | 
| 148 |     // - round up 11+2 == 13 up to 16 items
 | 
| 149 |     // - return 14 items
 | 
| 150 |     // - 14 integers is 56 bytes, plus 8 byte GC header => 64 byte alloc.
 | 
| 151 |     return RoundUp(num_desired + kHeaderFudge) - kHeaderFudge;
 | 
| 152 |   }
 | 
| 153 | };
 | 
| 154 | 
 | 
| 155 | // "Constructors" as free functions since we can't allocate within a
 | 
| 156 | // constructor.  Allocation may cause garbage collection, which interferes with
 | 
| 157 | // placement new.
 | 
| 158 | 
 | 
| 159 | // This is not really necessary, only syntactic sugar.
 | 
| 160 | template <typename T>
 | 
| 161 | List<T>* NewList() {
 | 
| 162 |   return Alloc<List<T>>();
 | 
| 163 | }
 | 
| 164 | 
 | 
| 165 | // Literal ['foo', 'bar']
 | 
| 166 | // This seems to allow better template argument type deduction than a
 | 
| 167 | // constructor.
 | 
| 168 | template <typename T>
 | 
| 169 | List<T>* NewList(std::initializer_list<T> init) {
 | 
| 170 |   auto self = Alloc<List<T>>();
 | 
| 171 | 
 | 
| 172 |   int n = init.size();
 | 
| 173 |   self->reserve(n);
 | 
| 174 | 
 | 
| 175 |   int i = 0;
 | 
| 176 |   for (auto item : init) {
 | 
| 177 |     self->set(i, item);
 | 
| 178 |     ++i;
 | 
| 179 |   }
 | 
| 180 |   self->len_ = n;
 | 
| 181 |   return self;
 | 
| 182 | }
 | 
| 183 | 
 | 
| 184 | // ['foo'] * 3
 | 
| 185 | template <typename T>
 | 
| 186 | List<T>* NewList(T item, int times) {
 | 
| 187 |   auto self = Alloc<List<T>>();
 | 
| 188 | 
 | 
| 189 |   self->reserve(times);
 | 
| 190 |   self->len_ = times;
 | 
| 191 |   for (int i = 0; i < times; ++i) {
 | 
| 192 |     self->set(i, item);
 | 
| 193 |   }
 | 
| 194 |   return self;
 | 
| 195 | }
 | 
| 196 | 
 | 
| 197 | template <typename T>
 | 
| 198 | void List<T>::append(T item) {
 | 
| 199 |   reserve(len_ + 1);
 | 
| 200 |   slab_->items_[len_] = item;
 | 
| 201 |   ++len_;
 | 
| 202 | }
 | 
| 203 | 
 | 
| 204 | template <typename T>
 | 
| 205 | int len(const List<T>* L) {
 | 
| 206 |   return L->len_;
 | 
| 207 | }
 | 
| 208 | 
 | 
| 209 | template <typename T>
 | 
| 210 | List<T>* list_repeat(T item, int times);
 | 
| 211 | 
 | 
| 212 | template <typename T>
 | 
| 213 | inline bool list_contains(List<T>* haystack, T needle);
 | 
| 214 | 
 | 
| 215 | template <typename K, typename V>
 | 
| 216 | class Dict;  // forward decl
 | 
| 217 | 
 | 
| 218 | template <typename V>
 | 
| 219 | List<BigStr*>* sorted(Dict<BigStr*, V>* d);
 | 
| 220 | 
 | 
| 221 | template <typename T>
 | 
| 222 | List<T>* sorted(List<T>* l);
 | 
| 223 | 
 | 
| 224 | // L[begin:]
 | 
| 225 | template <typename T>
 | 
| 226 | List<T>* List<T>::slice(int begin) {
 | 
| 227 |   return slice(begin, len_);
 | 
| 228 | }
 | 
| 229 | 
 | 
| 230 | // L[begin:end]
 | 
| 231 | template <typename T>
 | 
| 232 | List<T>* List<T>::slice(int begin, int end) {
 | 
| 233 |   SLICE_ADJUST(begin, end, len_);
 | 
| 234 | 
 | 
| 235 |   DCHECK(0 <= begin && begin <= len_);
 | 
| 236 |   DCHECK(0 <= end && end <= len_);
 | 
| 237 | 
 | 
| 238 |   int new_len = end - begin;
 | 
| 239 |   DCHECK(0 <= new_len && new_len <= len_);
 | 
| 240 | 
 | 
| 241 |   List<T>* result = NewList<T>();
 | 
| 242 |   result->reserve(new_len);
 | 
| 243 | 
 | 
| 244 |   // Faster than append() in a loop
 | 
| 245 |   memcpy(result->slab_->items_, slab_->items_ + begin, new_len * sizeof(T));
 | 
| 246 |   result->len_ = new_len;
 | 
| 247 | 
 | 
| 248 |   return result;
 | 
| 249 | }
 | 
| 250 | 
 | 
| 251 | // Ensure that there's space for a number of items
 | 
| 252 | template <typename T>
 | 
| 253 | void List<T>::reserve(int num_desired) {
 | 
| 254 |   // log("reserve capacity = %d, n = %d", capacity_, n);
 | 
| 255 | 
 | 
| 256 |   // Don't do anything if there's already enough space.
 | 
| 257 |   if (capacity_ >= num_desired) {
 | 
| 258 |     return;
 | 
| 259 |   }
 | 
| 260 | 
 | 
| 261 |   // Slabs should be a total of 2^N bytes.  kCapacityAdjust is the number of
 | 
| 262 |   // items that the 8 byte header takes up: 1 for List<T*>, and 2 for
 | 
| 263 |   // List<int>.
 | 
| 264 |   //
 | 
| 265 |   // Example: the user reserves space for 3 integers.  The minimum number of
 | 
| 266 |   // items would be 5, which is rounded up to 8.  Subtract 2 again, giving 6,
 | 
| 267 |   // which leads to 8 + 6*4 = 32 byte Slab.
 | 
| 268 | 
 | 
| 269 |   capacity_ = HowManyItems(num_desired);
 | 
| 270 |   auto new_slab = NewSlab<T>(capacity_);
 | 
| 271 | 
 | 
| 272 |   if (len_ > 0) {
 | 
| 273 |     // log("Copying %d bytes", len_ * sizeof(T));
 | 
| 274 |     memcpy(new_slab->items_, slab_->items_, len_ * sizeof(T));
 | 
| 275 |   }
 | 
| 276 |   slab_ = new_slab;
 | 
| 277 | }
 | 
| 278 | 
 | 
| 279 | // Implements L[i] = item
 | 
| 280 | template <typename T>
 | 
| 281 | void List<T>::set(int i, T item) {
 | 
| 282 |   if (i < 0) {
 | 
| 283 |     i = len_ + i;
 | 
| 284 |   }
 | 
| 285 | 
 | 
| 286 |   DCHECK(i >= 0);
 | 
| 287 |   DCHECK(i < capacity_);
 | 
| 288 | 
 | 
| 289 |   slab_->items_[i] = item;
 | 
| 290 | }
 | 
| 291 | 
 | 
| 292 | // Implements L[i]
 | 
| 293 | template <typename T>
 | 
| 294 | T List<T>::at(int i) {
 | 
| 295 |   if (i < 0) {
 | 
| 296 |     int j = len_ + i;
 | 
| 297 |     if (j >= len_ || j < 0) {
 | 
| 298 |       throw Alloc<IndexError>();
 | 
| 299 |     }
 | 
| 300 |     return slab_->items_[j];
 | 
| 301 |   }
 | 
| 302 | 
 | 
| 303 |   if (i >= len_ || i < 0) {
 | 
| 304 |     throw Alloc<IndexError>();
 | 
| 305 |   }
 | 
| 306 |   return slab_->items_[i];
 | 
| 307 | }
 | 
| 308 | 
 | 
| 309 | // L.index(i) -- Python method
 | 
| 310 | template <typename T>
 | 
| 311 | int List<T>::index(T value) {
 | 
| 312 |   int element_count = len(this);
 | 
| 313 |   for (int i = 0; i < element_count; i++) {
 | 
| 314 |     if (items_equal(slab_->items_[i], value)) {
 | 
| 315 |       return i;
 | 
| 316 |     }
 | 
| 317 |   }
 | 
| 318 |   throw Alloc<ValueError>();
 | 
| 319 | }
 | 
| 320 | 
 | 
| 321 | // Should we have a separate API that doesn't return it?
 | 
| 322 | // https://stackoverflow.com/questions/12600330/pop-back-return-value
 | 
| 323 | template <typename T>
 | 
| 324 | T List<T>::pop() {
 | 
| 325 |   if (len_ == 0) {
 | 
| 326 |     throw Alloc<IndexError>();
 | 
| 327 |   }
 | 
| 328 |   len_--;
 | 
| 329 |   T result = slab_->items_[len_];
 | 
| 330 |   slab_->items_[len_] = 0;  // zero for GC scan
 | 
| 331 |   return result;
 | 
| 332 | }
 | 
| 333 | 
 | 
| 334 | // Used in osh/word_parse.py to remove from front
 | 
| 335 | template <typename T>
 | 
| 336 | T List<T>::pop(int i) {
 | 
| 337 |   if (len_ < i) {
 | 
| 338 |     throw Alloc<IndexError>();
 | 
| 339 |   }
 | 
| 340 | 
 | 
| 341 |   T result = at(i);
 | 
| 342 |   len_--;
 | 
| 343 | 
 | 
| 344 |   // Shift everything by one
 | 
| 345 |   memmove(slab_->items_ + i, slab_->items_ + (i + 1), (len_ - i) * sizeof(T));
 | 
| 346 | 
 | 
| 347 |   /*
 | 
| 348 |   for (int j = 0; j < len_; j++) {
 | 
| 349 |     slab_->items_[j] = slab_->items_[j+1];
 | 
| 350 |   }
 | 
| 351 |   */
 | 
| 352 | 
 | 
| 353 |   slab_->items_[len_] = 0;  // zero for GC scan
 | 
| 354 |   return result;
 | 
| 355 | }
 | 
| 356 | 
 | 
| 357 | template <typename T>
 | 
| 358 | void List<T>::remove(T x) {
 | 
| 359 |   int idx = this->index(x);
 | 
| 360 |   this->pop(idx);  // unused
 | 
| 361 | }
 | 
| 362 | 
 | 
| 363 | template <typename T>
 | 
| 364 | void List<T>::clear() {
 | 
| 365 |   if (slab_) {
 | 
| 366 |     memset(slab_->items_, 0, len_ * sizeof(T));  // zero for GC scan
 | 
| 367 |   }
 | 
| 368 |   len_ = 0;
 | 
| 369 | }
 | 
| 370 | 
 | 
| 371 | // Used in osh/string_ops.py
 | 
| 372 | template <typename T>
 | 
| 373 | void List<T>::reverse() {
 | 
| 374 |   for (int i = 0; i < len_ / 2; ++i) {
 | 
| 375 |     // log("swapping %d and %d", i, n-i);
 | 
| 376 |     T tmp = slab_->items_[i];
 | 
| 377 |     int j = len_ - 1 - i;
 | 
| 378 |     slab_->items_[i] = slab_->items_[j];
 | 
| 379 |     slab_->items_[j] = tmp;
 | 
| 380 |   }
 | 
| 381 | }
 | 
| 382 | 
 | 
| 383 | // Extend this list with multiple elements.
 | 
| 384 | template <typename T>
 | 
| 385 | void List<T>::extend(List<T>* other) {
 | 
| 386 |   int n = other->len_;
 | 
| 387 |   int new_len = len_ + n;
 | 
| 388 |   reserve(new_len);
 | 
| 389 | 
 | 
| 390 |   for (int i = 0; i < n; ++i) {
 | 
| 391 |     set(len_ + i, other->slab_->items_[i]);
 | 
| 392 |   }
 | 
| 393 |   len_ = new_len;
 | 
| 394 | }
 | 
| 395 | 
 | 
| 396 | inline bool CompareBigStr(BigStr* a, BigStr* b) {
 | 
| 397 |   return mylib::str_cmp(a, b) < 0;
 | 
| 398 | }
 | 
| 399 | 
 | 
| 400 | template <>
 | 
| 401 | inline void List<BigStr*>::sort() {
 | 
| 402 |   std::sort(slab_->items_, slab_->items_ + len_, CompareBigStr);
 | 
| 403 | }
 | 
| 404 | 
 | 
| 405 | inline bool CompareBigInt(mops::BigInt a, mops::BigInt b) {
 | 
| 406 |   return a < b;
 | 
| 407 | }
 | 
| 408 | 
 | 
| 409 | template <>
 | 
| 410 | inline void List<mops::BigInt>::sort() {
 | 
| 411 |   std::sort(slab_->items_, slab_->items_ + len_, CompareBigInt);
 | 
| 412 | }
 | 
| 413 | 
 | 
| 414 | // TODO: mycpp can just generate the constructor instead?
 | 
| 415 | // e.g. [None] * 3
 | 
| 416 | template <typename T>
 | 
| 417 | List<T>* list_repeat(T item, int times) {
 | 
| 418 |   return NewList<T>(item, times);
 | 
| 419 | }
 | 
| 420 | 
 | 
| 421 | // e.g. 'a' in ['a', 'b', 'c']
 | 
| 422 | template <typename T>
 | 
| 423 | inline bool list_contains(List<T>* haystack, T needle) {
 | 
| 424 |   int n = len(haystack);
 | 
| 425 |   for (int i = 0; i < n; ++i) {
 | 
| 426 |     if (items_equal(haystack->at(i), needle)) {
 | 
| 427 |       return true;
 | 
| 428 |     }
 | 
| 429 |   }
 | 
| 430 |   return false;
 | 
| 431 | }
 | 
| 432 | 
 | 
| 433 | template <typename V>
 | 
| 434 | List<BigStr*>* sorted(Dict<BigStr*, V>* d) {
 | 
| 435 |   auto keys = d->keys();
 | 
| 436 |   keys->sort();
 | 
| 437 |   return keys;
 | 
| 438 | }
 | 
| 439 | 
 | 
| 440 | template <typename T>
 | 
| 441 | List<T>* sorted(List<T>* l) {
 | 
| 442 |   auto ret = list(l);
 | 
| 443 |   ret->sort();
 | 
| 444 |   return ret;
 | 
| 445 | }
 | 
| 446 | 
 | 
| 447 | // list(L) copies the list
 | 
| 448 | template <typename T>
 | 
| 449 | List<T>* list(List<T>* other) {
 | 
| 450 |   auto result = NewList<T>();
 | 
| 451 |   result->extend(other);
 | 
| 452 |   return result;
 | 
| 453 | }
 | 
| 454 | 
 | 
| 455 | template <class T>
 | 
| 456 | class ListIter {
 | 
| 457 |  public:
 | 
| 458 |   explicit ListIter(List<T>* L) : L_(L), i_(0) {
 | 
| 459 |     // Cheney only: L_ could be moved during iteration.
 | 
| 460 |     // gHeap.PushRoot(reinterpret_cast<RawObject**>(&L_));
 | 
| 461 |   }
 | 
| 462 | 
 | 
| 463 |   ~ListIter() {
 | 
| 464 |     // gHeap.PopRoot();
 | 
| 465 |   }
 | 
| 466 |   void Next() {
 | 
| 467 |     i_++;
 | 
| 468 |   }
 | 
| 469 |   bool Done() {
 | 
| 470 |     // "unsigned size_t was a mistake"
 | 
| 471 |     return i_ >= static_cast<int>(L_->len_);
 | 
| 472 |   }
 | 
| 473 |   T Value() {
 | 
| 474 |     return L_->slab_->items_[i_];
 | 
| 475 |   }
 | 
| 476 |   T iterNext() {
 | 
| 477 |     if (Done()) {
 | 
| 478 |       throw Alloc<StopIteration>();
 | 
| 479 |     }
 | 
| 480 |     T ret = L_->slab_->items_[i_];
 | 
| 481 |     Next();
 | 
| 482 |     return ret;
 | 
| 483 |   }
 | 
| 484 | 
 | 
| 485 |   // only for use with generators
 | 
| 486 |   List<T>* GetList() {
 | 
| 487 |     return L_;
 | 
| 488 |   }
 | 
| 489 | 
 | 
| 490 |  private:
 | 
| 491 |   List<T>* L_;
 | 
| 492 |   int i_;
 | 
| 493 | };
 | 
| 494 | 
 | 
| 495 | // list(it) returns the iterator's backing list
 | 
| 496 | template <typename T>
 | 
| 497 | List<T>* list(ListIter<T> it) {
 | 
| 498 |   return list(it.GetList());
 | 
| 499 | }
 | 
| 500 | 
 | 
| 501 | // TODO: Does using pointers rather than indices make this more efficient?
 | 
| 502 | template <class T>
 | 
| 503 | class ReverseListIter {
 | 
| 504 |  public:
 | 
| 505 |   explicit ReverseListIter(List<T>* L) : L_(L), i_(L_->len_ - 1) {
 | 
| 506 |   }
 | 
| 507 |   void Next() {
 | 
| 508 |     i_--;
 | 
| 509 |   }
 | 
| 510 |   bool Done() {
 | 
| 511 |     return i_ < 0;
 | 
| 512 |   }
 | 
| 513 |   T Value() {
 | 
| 514 |     return L_->slab_->items_[i_];
 | 
| 515 |   }
 | 
| 516 | 
 | 
| 517 |  private:
 | 
| 518 |   List<T>* L_;
 | 
| 519 |   int i_;
 | 
| 520 | };
 | 
| 521 | 
 | 
| 522 | int max(List<int>* elems);
 | 
| 523 | 
 | 
| 524 | #endif  // MYCPP_GC_LIST_H
 |