1 | """
|
2 | lexer_def.py - Lexing for OSH, YSH, and J8 Notation.
|
3 |
|
4 | The OSH/YSH lexer has lexer modes, each with a regex -> Id mapping.
|
5 |
|
6 | After changing this file, run:
|
7 |
|
8 | build/py.sh all
|
9 |
|
10 | or at least:
|
11 |
|
12 | build/py.sh fastlex
|
13 |
|
14 | Input Handling
|
15 | --------------
|
16 |
|
17 | Every line is NUL terminated:
|
18 |
|
19 | 'one\n\0' 'last line\0'
|
20 |
|
21 | which means that no regexes below should match \0.
|
22 |
|
23 | For example, use [^'\0]+ instead of [^']+ .
|
24 |
|
25 | If this rule isn't followed, we would read uninitialized memory past the
|
26 | sentinel. Python's regex engine knows where the end of the input string is, so
|
27 | it doesn't require need a sentinel like \0.
|
28 |
|
29 | The frontend/lexer_gen.py generator adds a pattern mapping \0 to Id.Eol_Tok.
|
30 | """
|
31 |
|
32 | from _devbuild.gen.id_kind_asdl import Id, Id_t, Kind
|
33 | from _devbuild.gen.types_asdl import lex_mode_e
|
34 |
|
35 | from frontend import id_kind_def
|
36 |
|
37 | from typing import Tuple
|
38 |
|
39 | # Initialize spec that the lexer depends on.
|
40 | ID_SPEC = id_kind_def.IdSpec({}, {})
|
41 |
|
42 | id_kind_def.AddKinds(ID_SPEC)
|
43 | id_kind_def.AddBoolKinds(ID_SPEC) # must come second
|
44 | id_kind_def.SetupTestBuiltin(ID_SPEC, {}, {}, {})
|
45 |
|
46 |
|
47 | def C(pat, tok_type):
|
48 | # type: (str, Id_t) -> Tuple[bool, str, Id_t]
|
49 | """Lexer rule with a constant string, e.g. C('$*', VSub_Star)"""
|
50 | return (False, pat, tok_type)
|
51 |
|
52 |
|
53 | def R(pat, tok_type):
|
54 | # type: (str, Id_t) -> Tuple[bool, str, Id_t]
|
55 | """Lexer rule with a regex string, e.g. R('\$[0-9]', VSub_Number)"""
|
56 | return (True, pat, tok_type)
|
57 |
|
58 |
|
59 | # See unit tests in frontend/match_test.py.
|
60 | # We need the [^\0]* because the re2c translation assumes it's anchored like $.
|
61 | SHOULD_HIJACK_RE = r'#![^\0]*sh[ \t\r\n][^\0]*'
|
62 |
|
63 | # Separates words (\r it not whitespace here)
|
64 | _SIGNIFICANT_SPACE = R(r'[ \t]+', Id.WS_Space)
|
65 |
|
66 | _BACKSLASH = [
|
67 | # To be conservative, we could deny a set of chars similar to
|
68 | # _LITERAL_WHITELIST_REGEX, rather than allowing all the operator characters
|
69 | # like \( and \;.
|
70 | #
|
71 | # strict_backslash makes this stricter.
|
72 | R(r'\\[^\n\0]', Id.Lit_EscapedChar),
|
73 | C('\\\n', Id.Ignored_LineCont),
|
74 | ]
|
75 |
|
76 | # Only 4 characters are backslash escaped inside "".
|
77 | # https://www.gnu.org/software/bash/manual/bash.html#Double-Quotes
|
78 | _DQ_BACKSLASH = [
|
79 | R(r'\\[$`"\\]', Id.Lit_EscapedChar),
|
80 | C('\\', Id.Lit_BadBackslash), # syntax error in YSH, but NOT in OSH
|
81 | ]
|
82 |
|
83 | VAR_NAME_RE = r'[a-zA-Z_][a-zA-Z0-9_]*'
|
84 |
|
85 | # All Kind.VSub
|
86 | _VARS = [
|
87 | # Unbraced variables
|
88 | R(r'\$' + VAR_NAME_RE, Id.VSub_DollarName),
|
89 | R(r'\$[0-9]', Id.VSub_Number),
|
90 | C(r'$!', Id.VSub_Bang),
|
91 | C(r'$@', Id.VSub_At),
|
92 | C(r'$#', Id.VSub_Pound),
|
93 | C(r'$$', Id.VSub_Dollar),
|
94 | C(r'$*', Id.VSub_Star),
|
95 | C(r'$-', Id.VSub_Hyphen),
|
96 | C(r'$?', Id.VSub_QMark),
|
97 | ]
|
98 |
|
99 | # Kind.Left that are valid in double-quoted modes.
|
100 |
|
101 | _LEFT_SUBS = [
|
102 | C('`', Id.Left_Backtick),
|
103 | C('$(', Id.Left_DollarParen),
|
104 | C('${', Id.Left_DollarBrace),
|
105 | # Parse zsh syntax, but don't execute it.
|
106 | # The examples we've seen so far are like ${(%):-} and ${(m)
|
107 | R(r'\$\{\([^)\0]+\)', Id.Left_DollarBraceZsh),
|
108 | C('$((', Id.Left_DollarDParen),
|
109 | C('$[', Id.Left_DollarBracket),
|
110 | ]
|
111 |
|
112 | # Additional Kind.Left that are valid in unquoted modes.
|
113 | _LEFT_UNQUOTED = [
|
114 | C('"', Id.Left_DoubleQuote),
|
115 | C("'", Id.Left_SingleQuote),
|
116 | C('$"', Id.Left_DollarDoubleQuote),
|
117 | C("$'", Id.Left_DollarSingleQuote),
|
118 | ]
|
119 |
|
120 | _LEFT_PROCSUB = [
|
121 | C('<(', Id.Left_ProcSubIn),
|
122 | C('>(', Id.Left_ProcSubOut),
|
123 | ]
|
124 |
|
125 | # The regexes below are in Python syntax, but are translate to re2c syntax by
|
126 | # frontend/lexer_gen.py.
|
127 | #
|
128 | # http://re2c.org/manual/syntax/syntax.html
|
129 | # https://docs.python.org/2/library/re.html
|
130 | #
|
131 | # We use a limited set of constructs:
|
132 | # - + and * for repetition
|
133 | # - Character classes [] with simple ranges and negation
|
134 | # - Escapes like \n \0
|
135 |
|
136 | LEXER_DEF = {} # TODO: Should be a list so we enforce order.
|
137 |
|
138 | # Anything until the end of the line is a comment. Does not match the newline
|
139 | # itself. We want to switch modes and possibly process Op_Newline for here
|
140 | # docs, etc.
|
141 | LEXER_DEF[lex_mode_e.Comment] = [R(r'[^\n\0]*', Id.Ignored_Comment)]
|
142 |
|
143 | # A whitelist to make bigger Lit_Chars tokens. We don't want one byte at a time.
|
144 | #
|
145 | # The shell language says that "anything other byte" is a literal character --
|
146 | # for example, unquoted $ \ ! are literal, not a syntax error.
|
147 | #
|
148 | # That is, a literal is defined NEGATIVELY, for a single characters. But here
|
149 | # we define a SUBSET of literal chars POSITIVELY.
|
150 |
|
151 | # The range \x80-\xff makes sure that UTF-8 sequences are a single token.
|
152 | _LITERAL_WHITELIST_REGEX = r'[\x80-\xffa-zA-Z0-9_.\-]+'
|
153 |
|
154 | _UNQUOTED = _BACKSLASH + _LEFT_SUBS + _LEFT_UNQUOTED + _LEFT_PROCSUB + _VARS + [
|
155 | # NOTE: We could add anything 128 and above to this character class? So
|
156 | # utf-8 characters don't get split?
|
157 | R(_LITERAL_WHITELIST_REGEX, Id.Lit_Chars),
|
158 | C('~', Id.Lit_Tilde), # for tilde sub
|
159 | C('/', Id.Lit_Slash), # also for tilde sub
|
160 | C(':', Id.Lit_Colon), # for special PATH=a:~foo tilde detection
|
161 | C('$', Id.Lit_Dollar), # shopt -u parse_dollar
|
162 | C('#', Id.Lit_Pound), # For comments
|
163 | _SIGNIFICANT_SPACE,
|
164 | C('\n', Id.Op_Newline),
|
165 | C('&', Id.Op_Amp),
|
166 | C('|', Id.Op_Pipe),
|
167 | C('|&', Id.Op_PipeAmp),
|
168 | C('&&', Id.Op_DAmp),
|
169 | C('||', Id.Op_DPipe),
|
170 | C(';', Id.Op_Semi),
|
171 | # Case terminators
|
172 | C(';;', Id.Op_DSemi),
|
173 | C(';&', Id.Op_SemiAmp),
|
174 | C(';;&', Id.Op_DSemiAmp),
|
175 | C('(', Id.Op_LParen),
|
176 | C(')', Id.Op_RParen),
|
177 | R(r'[^\0]', Id.Lit_Other), # any other single char is a literal
|
178 | ]
|
179 |
|
180 | # In ShCommand and DBracket states.
|
181 | _EXTGLOB_BEGIN = [
|
182 | C(',(', Id.ExtGlob_Comma), # YSH synonym for @(...)
|
183 | C('@(', Id.ExtGlob_At),
|
184 | C('*(', Id.ExtGlob_Star),
|
185 | C('+(', Id.ExtGlob_Plus),
|
186 | C('?(', Id.ExtGlob_QMark),
|
187 | C('!(', Id.ExtGlob_Bang),
|
188 | ]
|
189 |
|
190 | KEYWORDS = [
|
191 | # NOTE: { is matched elsewhere
|
192 | C('[[', Id.KW_DLeftBracket),
|
193 | C('!', Id.KW_Bang),
|
194 | C('for', Id.KW_For),
|
195 | C('while', Id.KW_While),
|
196 | C('until', Id.KW_Until),
|
197 | C('do', Id.KW_Do),
|
198 | C('done', Id.KW_Done),
|
199 | C('in', Id.KW_In),
|
200 | C('case', Id.KW_Case),
|
201 | C('esac', Id.KW_Esac),
|
202 | C('if', Id.KW_If),
|
203 | C('fi', Id.KW_Fi),
|
204 | C('then', Id.KW_Then),
|
205 | C('else', Id.KW_Else),
|
206 | C('elif', Id.KW_Elif),
|
207 | C('function', Id.KW_Function),
|
208 | C('time', Id.KW_Time),
|
209 |
|
210 | # YSH
|
211 | C('const', Id.KW_Const), # maybe remove this
|
212 | C('var', Id.KW_Var),
|
213 | C('setvar', Id.KW_SetVar),
|
214 | C('setglobal', Id.KW_SetGlobal),
|
215 | C('call', Id.KW_Call),
|
216 | C('proc', Id.KW_Proc),
|
217 | C('typed', Id.KW_Typed),
|
218 | C('func', Id.KW_Func),
|
219 | ]
|
220 |
|
221 | # These are treated like builtins in bash, but keywords in OSH. However, we
|
222 | # maintain compatibility with bash for the 'type' builtin.
|
223 | CONTROL_FLOW = [
|
224 | C('break', Id.ControlFlow_Break),
|
225 | C('continue', Id.ControlFlow_Continue),
|
226 | C('return', Id.ControlFlow_Return),
|
227 | C('exit', Id.ControlFlow_Exit),
|
228 | ]
|
229 |
|
230 | # Used by ysh/grammar_gen.py too
|
231 | EXPR_WORDS = [
|
232 | C('null', Id.Expr_Null),
|
233 | C('true', Id.Expr_True),
|
234 | C('false', Id.Expr_False),
|
235 | C('and', Id.Expr_And),
|
236 | C('or', Id.Expr_Or),
|
237 | C('not', Id.Expr_Not),
|
238 | C('for', Id.Expr_For),
|
239 | C('is', Id.Expr_Is),
|
240 | C('in', Id.Expr_In),
|
241 | C('if', Id.Expr_If),
|
242 | C('else', Id.Expr_Else),
|
243 |
|
244 | # Unused: could be for function literals, although we also have
|
245 | # |x| x+1 lambdas
|
246 | C('func', Id.Expr_Func),
|
247 |
|
248 | # / <capture d+/
|
249 | C('capture', Id.Expr_Capture),
|
250 | # / <capture d+ as date> /
|
251 | C('as', Id.Expr_As),
|
252 | ]
|
253 |
|
254 | FD_VAR_NAME = r'\{' + VAR_NAME_RE + r'\}'
|
255 |
|
256 | # file descriptors can only have two digits, like mksh
|
257 | # dash/zsh/etc. can have one
|
258 | FD_NUM = r'[0-9]?[0-9]?'
|
259 |
|
260 | # These two can must be recognized in the ShCommand state, but can't nested
|
261 | # within [[.
|
262 | # Keywords have to be checked before _UNQUOTED so we get <KW_If "if"> instead
|
263 | # of <Lit_Chars "if">.
|
264 | LEXER_DEF[lex_mode_e.ShCommand] = [
|
265 | # These four are not allowed within [[, so they are in ShCommand but not
|
266 | # _UNQUOTED.
|
267 |
|
268 | # e.g. beginning of NAME=val, which will always be longer than
|
269 | # _LITERAL_WHITELIST_REGEX.
|
270 | R(VAR_NAME_RE + '\+?=', Id.Lit_VarLike),
|
271 | R(VAR_NAME_RE + '\[', Id.Lit_ArrayLhsOpen),
|
272 | R(r'\]\+?=', Id.Lit_ArrayLhsClose),
|
273 | C('((', Id.Op_DLeftParen),
|
274 |
|
275 | # For static globbing, and [] for array literals
|
276 | C('[', Id.Lit_LBracket), # e.g. A=(['x']=1)
|
277 | C(']', Id.Lit_RBracket), # e.g. *.[ch]
|
278 | # NOTE: Glob_Star and Glob_QMark are for dynamic parsing
|
279 | C('*', Id.Lit_Star),
|
280 | C('?', Id.Lit_QMark),
|
281 | C('###', Id.Lit_TPound), # like Lit_Pound, for doc comments
|
282 | C('...', Id.Lit_TDot), # ... for multiline commands
|
283 |
|
284 | # For brace expansion {a,b}
|
285 | C('{', Id.Lit_LBrace),
|
286 | C('}', Id.Lit_RBrace), # Also for var sub ${a}
|
287 | C(',', Id.Lit_Comma),
|
288 | C('=', Id.Lit_Equals), # for = f(x) and x = 1+2*3
|
289 | C('@', Id.Lit_At), # for detecting @[, @' etc. shopt -s parse_at_all
|
290 |
|
291 | # @array and @func(1, c)
|
292 | R('@' + VAR_NAME_RE, Id.Lit_Splice), # for YSH splicing
|
293 | C('@[', Id.Lit_AtLBracket), # @[split(x)]
|
294 | C('@{.', Id.Lit_AtLBraceDot), # for split builtin sub @{.myproc arg1}
|
295 | R(FD_NUM + r'<', Id.Redir_Less),
|
296 | R(FD_NUM + r'>', Id.Redir_Great),
|
297 | R(FD_NUM + r'<<', Id.Redir_DLess),
|
298 | R(FD_NUM + r'<<<', Id.Redir_TLess),
|
299 | R(FD_NUM + r'>>', Id.Redir_DGreat),
|
300 | R(FD_NUM + r'<<-', Id.Redir_DLessDash),
|
301 | R(FD_NUM + r'>&', Id.Redir_GreatAnd),
|
302 | R(FD_NUM + r'<&', Id.Redir_LessAnd),
|
303 | R(FD_NUM + r'<>', Id.Redir_LessGreat),
|
304 | R(FD_NUM + r'>\|', Id.Redir_Clobber),
|
305 | R(FD_VAR_NAME + r'<', Id.Redir_Less),
|
306 | R(FD_VAR_NAME + r'>', Id.Redir_Great),
|
307 | R(FD_VAR_NAME + r'<<', Id.Redir_DLess),
|
308 | R(FD_VAR_NAME + r'<<<', Id.Redir_TLess),
|
309 | R(FD_VAR_NAME + r'>>', Id.Redir_DGreat),
|
310 | R(FD_VAR_NAME + r'<<-', Id.Redir_DLessDash),
|
311 | R(FD_VAR_NAME + r'>&', Id.Redir_GreatAnd),
|
312 | R(FD_VAR_NAME + r'<&', Id.Redir_LessAnd),
|
313 | R(FD_VAR_NAME + r'<>', Id.Redir_LessGreat),
|
314 | R(FD_VAR_NAME + r'>\|', Id.Redir_Clobber),
|
315 |
|
316 | # No leading descriptor (2 is implied)
|
317 | C(r'&>', Id.Redir_AndGreat),
|
318 | C(r'&>>', Id.Redir_AndDGreat),
|
319 | ] + KEYWORDS + CONTROL_FLOW + _UNQUOTED + _EXTGLOB_BEGIN
|
320 |
|
321 | # Preprocessing before ShCommand
|
322 | LEXER_DEF[lex_mode_e.Backtick] = [
|
323 | C(r'`', Id.Backtick_Right),
|
324 | # A backslash, and then $ or ` or \
|
325 | R(r'\\[$`\\]', Id.Backtick_Quoted),
|
326 | # \" treated specially, depending on whether bacticks are double-quoted!
|
327 | R(r'\\"', Id.Backtick_DoubleQuote),
|
328 | R(r'[^`\\\0]+', Id.Backtick_Other), # contiguous run of literals
|
329 | R(r'[^\0]', Id.Backtick_Other), # anything else
|
330 | ]
|
331 |
|
332 | # DBRACKET: can be like ShCommand, except:
|
333 | # - Don't really need redirects either... Redir_Less could be Op_Less
|
334 | # - Id.Op_DLeftParen can't be nested inside.
|
335 | LEXER_DEF[lex_mode_e.DBracket] = [
|
336 | C(']]', Id.Lit_DRightBracket),
|
337 | # Must be KW and not Op, because we can have stuff like [[ $foo == !* ]]
|
338 | # in addition to [[ ! a && b ]]
|
339 | C('!', Id.KW_Bang),
|
340 | C('<', Id.Op_Less),
|
341 | C('>', Id.Op_Great),
|
342 | ] + ID_SPEC.LexerPairs(Kind.BoolUnary) + \
|
343 | ID_SPEC.LexerPairs(Kind.BoolBinary) + \
|
344 | _UNQUOTED + _EXTGLOB_BEGIN
|
345 |
|
346 | # Inside an extended glob, most characters are literals, including spaces and
|
347 | # punctuation. We also accept \, $var, ${var}, "", etc. They can also be
|
348 | # nested, so _EXTGLOB_BEGIN appears here.
|
349 | #
|
350 | # Example: echo @(<> <>|&&|'foo'|$bar)
|
351 | LEXER_DEF[lex_mode_e.ExtGlob] = \
|
352 | _BACKSLASH + _LEFT_SUBS + _LEFT_UNQUOTED + _VARS + _EXTGLOB_BEGIN + [
|
353 | R(r'[^\\$`"\'|)@*+!?\0]+', Id.Lit_Chars),
|
354 | C('|', Id.Op_Pipe),
|
355 | C(')', Id.Op_RParen), # maybe be translated to Id.ExtGlob_RParen
|
356 | R(r'[^\0]', Id.Lit_Other), # everything else is literal
|
357 | ]
|
358 |
|
359 | # Notes on BASH_REGEX states
|
360 | #
|
361 | # From bash manual:
|
362 | #
|
363 | # - Any part of the pattern may be quoted to force the quoted portion to be
|
364 | # matched as a string.
|
365 | # - Bracket expressions in regular expressions must be treated carefully, since
|
366 | # normal quoting characters lose their meanings between brackets.
|
367 | # - If the pattern is stored in a shell variable, quoting the variable
|
368 | # expansion forces the entire pattern to be matched as a string.
|
369 | #
|
370 | # Is there a re.escape function? It's just like EscapeGlob and UnescapeGlob.
|
371 | #
|
372 | # TODO: For testing, write a script to extract and save regexes... and compile
|
373 | # them with regcomp. I've only seen constant regexes.
|
374 | #
|
375 | # bash code: ( | ) are special
|
376 |
|
377 | LEXER_DEF[lex_mode_e.BashRegex] = _LEFT_SUBS + _LEFT_UNQUOTED + _VARS + [
|
378 | # Like lex_mode_e.ShCommand
|
379 | R(_LITERAL_WHITELIST_REGEX, Id.Lit_Chars),
|
380 |
|
381 | # Tokens for Tilde sub. bash weirdness: RHS of [[ x =~ ~ ]] is expanded
|
382 | C('~', Id.Lit_Tilde),
|
383 | C('/', Id.Lit_Slash),
|
384 |
|
385 | # Id.WS_Space delimits words. In lex_mode_e.BashRegexFakeInner, we
|
386 | # translate them to Id.Lit_Chars.
|
387 | _SIGNIFICANT_SPACE,
|
388 |
|
389 | # Analogous to Id.ExtGlob_* - we need to change lexer modes when we hit this
|
390 | C('(', Id.BashRegex_LParen),
|
391 |
|
392 | # Not special, this is like lex_mode_e.Outer
|
393 | C(')', Id.Op_RParen),
|
394 |
|
395 | # Copied and adapted from _UNQUOTED
|
396 | # \n & ; < > are parse errors OUTSIDE a group [[ s =~ ; ]]
|
397 | # but become allowed INSIDE a group [[ s =~ (;) ]]
|
398 | C('\n', Id.BashRegex_AllowedInParens),
|
399 | C('&', Id.BashRegex_AllowedInParens),
|
400 | C(';', Id.BashRegex_AllowedInParens),
|
401 | C('>', Id.BashRegex_AllowedInParens),
|
402 | C('<', Id.BashRegex_AllowedInParens),
|
403 |
|
404 | # e.g. | is Id.Lit_Other, not pipe operator
|
405 | R(r'[^\0]', Id.Lit_Other), # like _UNQUOTED, any other byte is literal
|
406 | ] + _BACKSLASH # These have to come after RegexMeta
|
407 |
|
408 | LEXER_DEF[lex_mode_e.DQ] = _DQ_BACKSLASH + [
|
409 | C('\\\n', Id.Ignored_LineCont),
|
410 | ] + _LEFT_SUBS + _VARS + [
|
411 | R(r'[^$`"\0\\]+', Id.Lit_Chars), # matches a line at most
|
412 | C('$', Id.Lit_Dollar), # completion of var names relies on this
|
413 | # NOTE: When parsing here doc line, this token doesn't end it.
|
414 | C('"', Id.Right_DoubleQuote),
|
415 | ]
|
416 |
|
417 | _VS_ARG_COMMON = [
|
418 | C('/', Id.Lit_Slash), # for patsub (not Id.VOp2_Slash)
|
419 | C('#', Id.Lit_Pound), # for patsub prefix (not Id.VOp1_Pound)
|
420 | C('%', Id.Lit_Percent), # for patsdub suffix (not Id.VOp1_Percent)
|
421 | C('}', Id.Right_DollarBrace), # For var sub "${a}"
|
422 | C('$', Id.Lit_Dollar), # completion of var names relies on this
|
423 | ]
|
424 |
|
425 | # We don't execute zsh var subs, but to find the closing } properly, we need to
|
426 | # to recognize \} and '}' and "}" $'}' etc.
|
427 | LEXER_DEF[lex_mode_e.VSub_Zsh] = \
|
428 | _BACKSLASH + _LEFT_SUBS + _LEFT_UNQUOTED + _LEFT_PROCSUB + \
|
429 | [
|
430 | C('}', Id.Right_DollarBrace), # For var sub "${a}"
|
431 | R(r'[^\0]', Id.Lit_Other), # e.g. "$", must be last
|
432 | ]
|
433 |
|
434 | # Kind.{Lit,Ignored,VSub,Left,Right,Eof}
|
435 | LEXER_DEF[lex_mode_e.VSub_ArgUnquoted] = \
|
436 | _BACKSLASH + _VS_ARG_COMMON + _LEFT_SUBS + _LEFT_UNQUOTED + _LEFT_PROCSUB + \
|
437 | _VARS + _EXTGLOB_BEGIN + [
|
438 |
|
439 | # Token for Tilde sub
|
440 | C('~', Id.Lit_Tilde),
|
441 |
|
442 | # - doesn't match ~ for tilde sub
|
443 | # - doesn't match < and > so it doesn't eat <()
|
444 | # - doesn't match @ ! ? + * so it doesn't eat _EXTGLOB_BEGIN -- ( alone it
|
445 | # not enough
|
446 | R(r'[^$`~/}"\'\0\\#%<>@!?+*]+', Id.Lit_Chars),
|
447 | R(r'[^\0]', Id.Lit_Other), # e.g. "$", must be last
|
448 | ]
|
449 |
|
450 | # Kind.{Lit,Ignored,VSub,Left,Right,Eof}
|
451 | LEXER_DEF[lex_mode_e.VSub_ArgDQ] = \
|
452 | _DQ_BACKSLASH + _VS_ARG_COMMON + _LEFT_SUBS + _VARS + [
|
453 |
|
454 | C(r'\}', Id.Lit_EscapedChar), # For "${var-\}}"
|
455 |
|
456 | R(r'[^$`/}"\0\\#%]+', Id.Lit_Chars), # matches a line at most
|
457 |
|
458 | # Weird wart: even in double quoted state, double quotes are allowed
|
459 | C('"', Id.Left_DoubleQuote),
|
460 |
|
461 | # Another weird wart of bash/mksh: $'' is recognized but NOT ''!
|
462 | C("$'", Id.Left_DollarSingleQuote),
|
463 | ]
|
464 |
|
465 | # NOTE: Id.Ignored_LineCont is NOT supported in SQ state, as opposed to DQ
|
466 | # state.
|
467 | LEXER_DEF[lex_mode_e.SQ_Raw] = [
|
468 | R(r"[^'\0]+", Id.Lit_Chars), # matches a line at most
|
469 | C("'", Id.Right_SingleQuote),
|
470 | ]
|
471 |
|
472 | # The main purpose for EXPR_CHARS is in regex literals, e.g. [a-z \t \n].
|
473 | #
|
474 | # In YSH expressions, Chars are code point integers, so \u{1234} is the same as
|
475 | # 0x1234. And \0 is 0x0.
|
476 |
|
477 | # In Python:
|
478 | # chr(0x00012345) == u'\U00012345'
|
479 | #
|
480 | # In YSH:
|
481 | # 0x00012345 == \u{12345}
|
482 | # chr(0x00012345) == chr(\u{12345}) == $'\u{012345}'
|
483 |
|
484 | _U_BRACED_CHAR = R(r'\\[uU]\{[0-9a-fA-F]{1,6}\}', Id.Char_UBraced)
|
485 |
|
486 | _X_CHAR_LOOSE = R(r'\\x[0-9a-fA-F]{1,2}', Id.Char_Hex) # bash
|
487 | _X_CHAR_STRICT = R(r'\\x[0-9a-fA-F]{2}', Id.Char_Hex) # YSH
|
488 |
|
489 | _U4_CHAR_LOOSE = R(r'\\u[0-9a-fA-F]{1,4}', Id.Char_Unicode4) # bash
|
490 |
|
491 | _U4_CHAR_STRICT = R(r'\\u[0-9a-fA-F]{4}', Id.Char_Unicode4) # JSON-only
|
492 |
|
493 | #_JSON_ONE_CHAR = R(r'\\[\\"/bfnrt]', Id.Char_OneChar)
|
494 | EXPR_CHARS = [
|
495 | # Allow same backslash escapes as in J8 strings, except for legacy \b \f
|
496 | # and unnecessary \/
|
497 | # Issues:
|
498 | # - \0 should be written \y00?
|
499 | R(r'''\\[\\"'nrt]''', Id.Char_OneChar),
|
500 | _X_CHAR_STRICT,
|
501 |
|
502 | _U_BRACED_CHAR,
|
503 | ]
|
504 |
|
505 | # Shared between echo -e and $''.
|
506 | _C_STRING_COMMON = [
|
507 |
|
508 | # \x6 is valid in bash
|
509 | _X_CHAR_LOOSE,
|
510 | _U4_CHAR_LOOSE,
|
511 | R(r'\\U[0-9a-fA-F]{1,8}', Id.Char_Unicode8),
|
512 | R(r'\\[0abeEfrtnv\\]', Id.Char_OneChar),
|
513 |
|
514 | # e.g. \A is not an escape, and \x doesn't match a hex escape. We allow it,
|
515 | # but a lint tool could warn about it.
|
516 | C('\\', Id.Unknown_Backslash),
|
517 | ]
|
518 |
|
519 | ECHO_E_DEF = _C_STRING_COMMON + [
|
520 | # Note: tokens above \0377 can either be truncated or be flagged a syntax
|
521 | # error in strict mode.
|
522 | R(r'\\0[0-7]{1,3}', Id.Char_Octal4),
|
523 | C(r'\c', Id.Char_Stop),
|
524 |
|
525 | # e.g. 'foo', anything that's not a backslash escape
|
526 | R(r'[^\\\0]+', Id.Lit_Chars),
|
527 | ]
|
528 |
|
529 | # https://json.org/
|
530 |
|
531 | # Note that [0-9] has to come second, because Python chooses the first match.
|
532 | _JSON_INT = r'-?([1-9][0-9]*|[0-9])' # Numbers can't start with leading 0
|
533 | _JSON_FRACTION = r'(\.[0-9]+)?'
|
534 | _JSON_EXP = r'([eE][-+]?[0-9]+)?'
|
535 |
|
536 | # R5RS extended alphabetic characters
|
537 | # https://groups.csail.mit.edu/mac/ftpdir/scheme-reports/r5rs-html/r5rs_4.html
|
538 | #
|
539 | # ! $ % & * + - . / : < = > ? @ ^ _ ~
|
540 |
|
541 | # Description from Guile Scheme - https://www.gnu.org/software/guile/manual/html_node/Symbol-Read-Syntax.html
|
542 | #
|
543 | # "The read syntax for a symbol is a sequence of letters, digits, and extended
|
544 | # alphabetic characters, beginning with a character that cannot begin a
|
545 | # number. In addition, the special cases of +, -, and ... are read as symbols
|
546 | # even though numbers can begin with +, - or ."
|
547 | #
|
548 | # (They should have used regular languages!)
|
549 |
|
550 | # We take out $ and @ for our splicing syntax, i.e. $unquote and
|
551 | # @unquote-splicing. And : for now because we use it for name:value.
|
552 |
|
553 | # Also note Scheme allows |a b| for symbols with funny chars, and Guile scheme
|
554 | # allows #{a b}#. We could use `a b` or (symbol "a b").
|
555 |
|
556 | J8_SYMBOL_CHARS = r'!%&*+./<=>?^_~-' # - is last for regex char class
|
557 |
|
558 | # yapf: disable
|
559 | J8_SYMBOL_RE = (
|
560 | r'[a-zA-Z' + J8_SYMBOL_CHARS + ']' +
|
561 | r'[a-zA-Z0-9' + J8_SYMBOL_CHARS + ']*')
|
562 | # yapf: enable
|
563 |
|
564 | _J8_LEFT = [
|
565 | C('"', Id.Left_DoubleQuote), # JSON string
|
566 | C('j"', Id.Left_JDoubleQuote), # JSON string with explicit J8 prefix
|
567 | # Three left quotes that are J8 only
|
568 | C("u'", Id.Left_USingleQuote), # unicode string
|
569 | C("'", Id.Left_USingleQuote), # '' is alias for u'' in data, not in code
|
570 | C("b'", Id.Left_BSingleQuote), # byte string
|
571 | ]
|
572 |
|
573 | J8_DEF = _J8_LEFT + [
|
574 | C('[', Id.J8_LBracket),
|
575 | C(']', Id.J8_RBracket),
|
576 | C('{', Id.J8_LBrace),
|
577 | C('}', Id.J8_RBrace),
|
578 | C('(', Id.J8_LParen), # NIL8 only
|
579 | C(')', Id.J8_RParen), # NIL8 only
|
580 | C(',', Id.J8_Comma),
|
581 | C(':', Id.J8_Colon),
|
582 | C('null', Id.J8_Null),
|
583 | C('true', Id.J8_Bool),
|
584 | C('false', Id.J8_Bool),
|
585 | R(_JSON_INT, Id.J8_Int),
|
586 | R(_JSON_INT + _JSON_FRACTION + _JSON_EXP, Id.J8_Float),
|
587 |
|
588 | # Identifier names come AFTER null true false.
|
589 | # - Happens to be the same as shell identifier # names.
|
590 | # - Note that JS allows $ as an identifier, but we don't.
|
591 | # - Used for dict keys / NIL8 field names.
|
592 | R(VAR_NAME_RE, Id.J8_Identifier),
|
593 |
|
594 | # Symbol is a SUPERSET of Identifier. The first word in NIL8 can be can
|
595 | # be either Symbol or plain Identifier, but field names can only be
|
596 | # Identifier. JSON8 only has Identifier.
|
597 | #R(J8_SYMBOL_RE, Id.J8_Symbol), # NIL8 only
|
598 | R(r'[~!@$%^&*+=|;./<>?-]+', Id.J8_Operator), # NIL8 only
|
599 | R(r'[ \r\t]+', Id.Ignored_Space),
|
600 | # A separate token, to count lines for error messages
|
601 | C('\n', Id.Ignored_Newline),
|
602 | # comment is # until end of line
|
603 | # // comments are JavaScript style, but right now we might want them as
|
604 | # symbols?
|
605 | R(r'#[^\n\0]*', Id.Ignored_Comment), # J8 only (JSON8, NIL8)
|
606 |
|
607 | # This will reject ASCII control chars
|
608 | R(r'[^\0]', Id.Unknown_Tok),
|
609 | ]
|
610 |
|
611 | # Exclude control characters 0x00-0x1f, aka 0-31 in J8 data only (not YSH code)
|
612 | _ASCII_CONTROL = R(r'[\x01-\x1F]', Id.Char_AsciiControl)
|
613 |
|
614 | J8_LINES_DEF = _J8_LEFT + [
|
615 | # not sure if we want \r here - same with lex_mode_e.Expr
|
616 | R(r'[ \r\t]+', Id.WS_Space),
|
617 | R(r'[\n]', Id.J8_Newline),
|
618 |
|
619 | # doesn't match \t, which means tabs are allowed in the middle of unquoted
|
620 | # lines
|
621 | _ASCII_CONTROL,
|
622 |
|
623 | # not space or ' or " or ASCII control or EOF
|
624 | R(r'''[^ \t\r\n'"\x00-\x1F]+''', Id.Lit_Chars),
|
625 | ]
|
626 |
|
627 | # https://json.org list of chars, plus '
|
628 | _JSON_ONE_CHAR = R(r'\\[\\"/bfnrt]', Id.Char_OneChar)
|
629 |
|
630 | # b'' u'' strings - what's common between code and data.
|
631 | _J8_STR_COMMON = [
|
632 | C("'", Id.Right_SingleQuote), # end for J8
|
633 | _JSON_ONE_CHAR,
|
634 | C("\\'", Id.Char_OneChar), # since ' ends, allow \'
|
635 | R(r'\\y[0-9a-fA-F]{2}', Id.Char_YHex), # \yff - J8 only
|
636 | _U_BRACED_CHAR, # \u{123456} - J8 only
|
637 |
|
638 | # osh/word_parse.py relies on this. It has to be consistent with $''
|
639 | # lexing, which uses _C_STRING_COMMON
|
640 | C('\\', Id.Unknown_Backslash),
|
641 | ]
|
642 |
|
643 | # Lexer for J8 strings in CODE.
|
644 | LEXER_DEF[lex_mode_e.J8_Str] = _J8_STR_COMMON + [
|
645 | # Don't produce Char_AsciiControl tokens - that's only for data
|
646 |
|
647 | # will match invalid UTF-8 - we have a separate validation step
|
648 | R(r"[^\\'\0]+", Id.Lit_Chars),
|
649 | ]
|
650 |
|
651 | # Lexer for J8 string data.
|
652 | # ASCII control characters are disallowed in DATA, but not CODE!
|
653 | J8_STR_DEF = _J8_STR_COMMON + [
|
654 | _ASCII_CONTROL,
|
655 | # will match invalid UTF-8 - we have a separate validation step
|
656 | R(r"[^\\'\x00-\x1F]+", Id.Lit_Chars),
|
657 | ]
|
658 |
|
659 | # Lexer for JSON string data - e.g. "json \" \u1234"
|
660 | JSON_STR_DEF = [
|
661 | C('"', Id.Right_DoubleQuote), # end for JSON
|
662 | _JSON_ONE_CHAR,
|
663 | _U4_CHAR_STRICT, # \u1234 - JSON only
|
664 |
|
665 | # High surrogate [\uD800, \uDC00)
|
666 | # Low surrogate [\uDC00, \uE000)
|
667 | # This pattern makes it easier to decode. Unpaired surrogates because Id.Char_Unicode4.
|
668 | R(
|
669 | r'\\u[dD][89aAbB][0-9a-fA-F][0-9a-fA-F]\\u[dD][cCdDeEfF][0-9a-fA-F][0-9a-fA-F]',
|
670 | Id.Char_SurrogatePair),
|
671 | C('\\', Id.Unknown_Backslash), # e.g. the \ before bad \z
|
672 | _ASCII_CONTROL,
|
673 |
|
674 | # Note: This will match INVALID UTF-8. UTF-8 validation is another step.
|
675 | R(r'[^\\"\x00-\x1F]+', Id.Lit_Chars),
|
676 | ]
|
677 |
|
678 | OCTAL3_RE = r'\\[0-7]{1,3}'
|
679 |
|
680 | # https://www.gnu.org/software/bash/manual/html_node/Controlling-the-PromptEvaluator.html#Controlling-the-PromptEvaluator
|
681 | PS1_DEF = [
|
682 | R(OCTAL3_RE, Id.PS_Octal3),
|
683 | R(r'\\[adehHjlnrstT@AuvVwW!#$\\]', Id.PS_Subst),
|
684 | # \D{%H:%M} strftime format
|
685 | R(r'\\D\{[^}\0]*\}', Id.PS_Subst),
|
686 | C(r'\[', Id.PS_LBrace), # non-printing
|
687 | C(r'\]', Id.PS_RBrace),
|
688 | R(r'[^\\\0]+', Id.PS_Literals),
|
689 | # e.g. \x is not a valid escape.
|
690 | C('\\', Id.PS_BadBackslash),
|
691 | ]
|
692 |
|
693 | # NOTE: Id.Ignored_LineCont is also not supported here, even though the whole
|
694 | # point of it is that supports other backslash escapes like \n! It just
|
695 | # becomes a regular backslash.
|
696 | LEXER_DEF[lex_mode_e.SQ_C] = _C_STRING_COMMON + [
|
697 | # Weird special case matching bash: backslash that ends a line. We emit
|
698 | # this token literally in OSH, but disable it in YSH.
|
699 | C('\\\n', Id.Unknown_Backslash),
|
700 |
|
701 | # Silly difference! In echo -e, the syntax is \0377, but here it's $'\377',
|
702 | # with no leading 0.
|
703 | R(OCTAL3_RE, Id.Char_Octal3),
|
704 |
|
705 | # ' and " are escaped in $'' mode, but not echo -e.
|
706 | C(r"\'", Id.Char_OneChar),
|
707 | C(r'\"', Id.Char_OneChar),
|
708 |
|
709 | # e.g. 'foo', anything that's not a backslash escape or '
|
710 | R(r"[^\\'\0]+", Id.Lit_Chars),
|
711 | C("'", Id.Right_SingleQuote),
|
712 | ]
|
713 |
|
714 | LEXER_DEF[lex_mode_e.PrintfOuter] = _C_STRING_COMMON + [
|
715 | R(OCTAL3_RE, Id.Char_Octal3),
|
716 | R(r"[^%\\\0]+", Id.Lit_Chars),
|
717 | C('%%', Id.Format_EscapedPercent),
|
718 | C('%', Id.Format_Percent),
|
719 | ]
|
720 |
|
721 | # Maybe: bash also supports %(strftime)T
|
722 | LEXER_DEF[lex_mode_e.PrintfPercent] = [
|
723 | # Flags
|
724 | R('[- +#]', Id.Format_Flag),
|
725 | C('0', Id.Format_Zero),
|
726 | R('[1-9][0-9]*', Id.Format_Num),
|
727 | C('*', Id.Format_Star),
|
728 | C('.', Id.Format_Dot),
|
729 | # We support dsq. The others we parse to display an error message.
|
730 | R('[disqbcouxXeEfFgG]', Id.Format_Type),
|
731 | R('\([^()\0]*\)T', Id.Format_Time),
|
732 | R(r'[^\0]', Id.Unknown_Tok), # any other char
|
733 | ]
|
734 |
|
735 | LEXER_DEF[lex_mode_e.VSub_1] = [
|
736 | R(VAR_NAME_RE, Id.VSub_Name),
|
737 | # ${11} is valid, compared to $11 which is $1 and then literal 1.
|
738 | R(r'[0-9]+', Id.VSub_Number),
|
739 | C('!', Id.VSub_Bang),
|
740 | C('@', Id.VSub_At),
|
741 | C('#', Id.VSub_Pound),
|
742 | C('$', Id.VSub_Dollar),
|
743 | C('*', Id.VSub_Star),
|
744 | C('-', Id.VSub_Hyphen),
|
745 | C('?', Id.VSub_QMark),
|
746 | C('.', Id.VSub_Dot), # ${.myproc builtin sub}
|
747 | C('}', Id.Right_DollarBrace),
|
748 | C('\\\n', Id.Ignored_LineCont),
|
749 | C('\n', Id.Unknown_Tok), # newline not allowed inside ${}
|
750 | R(r'[^\0]', Id.Unknown_Tok), # any char except newline
|
751 | ]
|
752 |
|
753 | LEXER_DEF[lex_mode_e.VSub_2] = \
|
754 | ID_SPEC.LexerPairs(Kind.VTest) + \
|
755 | ID_SPEC.LexerPairs(Kind.VOp0) + \
|
756 | ID_SPEC.LexerPairs(Kind.VOpYsh) + \
|
757 | ID_SPEC.LexerPairs(Kind.VOp1) + \
|
758 | ID_SPEC.LexerPairs(Kind.VOp2) + \
|
759 | ID_SPEC.LexerPairs(Kind.VOp3) + [
|
760 | C('}', Id.Right_DollarBrace),
|
761 |
|
762 | C('\\\n', Id.Ignored_LineCont),
|
763 | C('\n', Id.Unknown_Tok), # newline not allowed inside ${}
|
764 | R(r'[^\0]', Id.Unknown_Tok), # any char except newline
|
765 | ]
|
766 |
|
767 | _EXPR_ARITH_SHARED = [
|
768 | C('\\\n', Id.Ignored_LineCont),
|
769 | R(r'[^\0]', Id.Unknown_Tok) # any char. This should be a syntax error.
|
770 | ]
|
771 |
|
772 | # https://www.gnu.org/software/bash/manual/html_node/Shell-Arithmetic.html#Shell-Arithmetic
|
773 | LEXER_DEF[lex_mode_e.Arith] = \
|
774 | _LEFT_SUBS + _VARS + _LEFT_UNQUOTED + [
|
775 |
|
776 | # Arithmetic expressions can cross newlines.
|
777 | R(r'[ \t\r\n]+', Id.Ignored_Space),
|
778 |
|
779 | # Examples of arith constants:
|
780 | # 64#azAZ
|
781 | # 0xabc 0xABC
|
782 | # 0123
|
783 | # A separate digits token makes this easier to parse STATICALLY. But this
|
784 | # doesn't help with DYNAMIC parsing.
|
785 | R(VAR_NAME_RE, Id.Lit_ArithVarLike), # for variable names or 64#_
|
786 | R(r'[0-9]+', Id.Lit_Digits),
|
787 | C('@', Id.Lit_At), # for 64#@ or ${a[@]}
|
788 | C('#', Id.Lit_Pound), # for 64#a
|
789 |
|
790 | # TODO: 64#@ interferes with VS_AT. Hm.
|
791 | ] + ID_SPEC.LexerPairs(Kind.Arith) + _EXPR_ARITH_SHARED
|
792 |
|
793 | # A lexer for the parser that converts globs to extended regexes. Since we're
|
794 | # only parsing character classes ([^[:space:][:alpha:]]) as opaque blobs, we
|
795 | # don't need lexer modes here.
|
796 | GLOB_DEF = [
|
797 | # These could be operators in the glob, or just literals in a char class,
|
798 | # e.g. touch '?'; echo [?].
|
799 | C('*', Id.Glob_Star),
|
800 | C('?', Id.Glob_QMark),
|
801 |
|
802 | # For negation. Treated as operators inside [], but literals outside.
|
803 | C('!', Id.Glob_Bang),
|
804 | C('^', Id.Glob_Caret),
|
805 |
|
806 | # Character classes.
|
807 | C('[', Id.Glob_LBracket),
|
808 | C(']', Id.Glob_RBracket),
|
809 |
|
810 | # There is no whitelist of characters; backslashes are unconditionally
|
811 | # removed. With libc.fnmatch(), the pattern r'\f' matches 'f' but not '\\f'.
|
812 | # See libc_test.py.
|
813 | R(r'\\[^\0]', Id.Glob_EscapedChar),
|
814 | C('\\', Id.Glob_BadBackslash), # Trailing single backslash
|
815 |
|
816 | # For efficiency, combine other characters into a single token, e.g. 'py' in
|
817 | # '*.py' or 'alpha' in '[[:alpha:]]'.
|
818 | R(r'[a-zA-Z0-9_]+', Id.Glob_CleanLiterals), # no regex escaping
|
819 | R(r'[^\0]', Id.Glob_OtherLiteral), # anything else -- examine the char
|
820 | ]
|
821 |
|
822 | # History expansion. We're doing this as "pre-lexing" since that's what bash
|
823 | # and zsh seem to do. Example:
|
824 | #
|
825 | # $ foo=x
|
826 | # $ echo $
|
827 | # $ !!foo # expands to echo $foo and prints x
|
828 | #
|
829 | # We can also reuse this in the RootCompleter to expand history interactively.
|
830 | #
|
831 | # bash note: handled in lib/readline/histexpand.c. Quite messy and handles
|
832 | # quotes AGAIN.
|
833 | #
|
834 | # Note: \! gets expanded to literal \! for the real lexer, but no history
|
835 | # expansion occurs.
|
836 |
|
837 | HISTORY_DEF = [
|
838 | # Common operators.
|
839 | R(r'![!*^$]', Id.History_Op),
|
840 |
|
841 | # By command number.
|
842 | R(r'!-?[0-9]+', Id.History_Num),
|
843 |
|
844 | # Search by prefix of substring (optional '?').
|
845 | # NOTE: there are no numbers allowed here! Bash doesn't seem to support it.
|
846 | # No hyphen since it conflits with $-1 too.
|
847 | #
|
848 | # Required trailing whitespace is there to avoid conflict with [!charclass]
|
849 | # and ${!indirect}. This is a simpler hack than the one bash has. See
|
850 | # frontend/lex_test.py.
|
851 | R(r'!\??[a-zA-Z_/.][0-9a-zA-Z_/.]+[ \t\r\n]', Id.History_Search),
|
852 |
|
853 | # Comment is until end of line
|
854 | R(r"#[^\0]*", Id.History_Other),
|
855 |
|
856 | # Single quoted, e.g. 'a' or $'\n'. Terminated by another single quote or
|
857 | # end of string.
|
858 | R(r"'[^'\0]*'?", Id.History_Other),
|
859 |
|
860 | # Runs of chars that are definitely not special
|
861 | R(r"[^!\\'#\0]+", Id.History_Other),
|
862 |
|
863 | # Escaped characters. \! disables history
|
864 | R(r'\\[^\0]', Id.History_Other),
|
865 | # Other single chars, like a trailing \ or !
|
866 | R(r'[^\0]', Id.History_Other),
|
867 | ]
|
868 |
|
869 | BRACE_RANGE_DEF = [
|
870 | R(r'-?[0-9]+', Id.Range_Int),
|
871 | R(r'[a-zA-Z]', Id.Range_Char), # just a single character
|
872 | R(r'\.\.', Id.Range_Dots),
|
873 | R(r'[^\0]', Id.Range_Other), # invalid
|
874 | ]
|
875 |
|
876 | #
|
877 | # YSH lexing
|
878 | #
|
879 |
|
880 | # Valid in lex_mode_e.{Expr,DQ}
|
881 | # Used by ysh/grammar_gen.py
|
882 | YSH_LEFT_SUBS = [
|
883 | C('$(', Id.Left_DollarParen),
|
884 | C('${', Id.Left_DollarBrace),
|
885 | C('$[', Id.Left_DollarBracket), # TODO: Implement $[x]
|
886 | ]
|
887 |
|
888 | # Valid in lex_mode_e.Expr, but not valid in DQ
|
889 | # Used by ysh/grammar_gen.py
|
890 |
|
891 | YSH_LEFT_UNQUOTED = [
|
892 | # Double quoted
|
893 | C('"', Id.Left_DoubleQuote),
|
894 | C('$"', Id.Left_DollarDoubleQuote), # $"" is synonym for ""
|
895 | C('j"', Id.Left_JDoubleQuote), # for printing ERROR
|
896 | # Single quoted
|
897 | C("'", Id.Left_SingleQuote),
|
898 | C("r'", Id.Left_RSingleQuote),
|
899 | C("u'", Id.Left_USingleQuote),
|
900 | C("b'", Id.Left_BSingleQuote),
|
901 | C("$'", Id.Left_DollarSingleQuote), # legacy
|
902 | C('^"', Id.Left_CaretDoubleQuote),
|
903 | C('"""', Id.Left_TDoubleQuote),
|
904 | C('$"""', Id.Left_DollarTDoubleQuote),
|
905 | # In expression mode, we add the r'' and c'' prefixes for '' and $''.
|
906 | C("'''", Id.Left_TSingleQuote),
|
907 | C("r'''", Id.Left_RTSingleQuote),
|
908 | C("u'''", Id.Left_UTSingleQuote),
|
909 | C("b'''", Id.Left_BTSingleQuote),
|
910 | C('@(', Id.Left_AtParen), # Split Command Sub
|
911 | C('^(', Id.Left_CaretParen), # Block literals in expression mode
|
912 | C('^[', Id.Left_CaretBracket), # Expr literals
|
913 | C('^{', Id.Left_CaretBrace), # Unused
|
914 | C(':|', Id.Left_ColonPipe), # shell-like word arrays.
|
915 | C('%(', Id.Left_PercentParen), # old syntax for shell-like word arrays.
|
916 | C('%[', Id.Expr_Reserved), # Maybe: like %() without unquoted [], {}
|
917 | C('%{', Id.Expr_Reserved), # Table literals
|
918 | # t = %{
|
919 | # name:Str age:Int
|
920 | # 'andy c' 10
|
921 | # }
|
922 | # Significant newlines. No unquoted [], {}
|
923 |
|
924 | # Not sure if we'll use these
|
925 | C('@{', Id.Expr_Reserved),
|
926 | C('@[', Id.Expr_Reserved),
|
927 |
|
928 | # Idea: Set literals are #{a, b} like Clojure
|
929 | ]
|
930 |
|
931 | # Used by ysh/grammar_gen.py
|
932 | EXPR_OPS = [
|
933 | # Terminator
|
934 | C(';', Id.Op_Semi),
|
935 | C('(', Id.Op_LParen),
|
936 | C(')', Id.Op_RParen),
|
937 | # NOTE: type expressions are expressions, e.g. Dict[Str, Int]
|
938 | C('[', Id.Op_LBracket),
|
939 | C(']', Id.Op_RBracket),
|
940 | C('{', Id.Op_LBrace),
|
941 | C('}', Id.Op_RBrace),
|
942 | ]
|
943 |
|
944 | # Newline is significant, but sometimes elided by expr_parse.py.
|
945 | _EXPR_NEWLINE_COMMENT = [
|
946 | C('\n', Id.Op_Newline),
|
947 | R(r'#[^\n\0]*', Id.Ignored_Comment),
|
948 | # Like lex_mode_e.Arith, \r is whitespace even without \n
|
949 | R(r'[ \t\r]+', Id.Ignored_Space),
|
950 | ]
|
951 |
|
952 | _WHITESPACE = r'[ \t\r\n]*' # ASCII whitespace doesn't have legacy \f \v
|
953 |
|
954 | # Python allows 0 to be written 00 or 0_0_0, which is weird. But let's be
|
955 | # consistent, and avoid '00' turning into a float!
|
956 | _DECIMAL_INT_RE = r'[0-9](_?[0-9])*'
|
957 |
|
958 | # Used for YSH comparison operators > >= < <=
|
959 | LOOKS_LIKE_INTEGER = _WHITESPACE + '-?' + _DECIMAL_INT_RE + _WHITESPACE
|
960 |
|
961 | _FLOAT_RE = (
|
962 | _DECIMAL_INT_RE +
|
963 | # Unlike Python, exponent can't be like 42e5_000. There's no use because
|
964 | # 1e309 is already inf. Let's keep our code simple.
|
965 | r'(\.' + _DECIMAL_INT_RE + ')?([eE][+\-]?[0-9]+)?')
|
966 |
|
967 | # Ditto, used for comparison operators
|
968 | # Added optional Optional -?
|
969 | # Example: -3_000_000.000_001e12
|
970 | LOOKS_LIKE_FLOAT = _WHITESPACE + '-?' + _FLOAT_RE + _WHITESPACE
|
971 |
|
972 | # Python 3 float literals:
|
973 |
|
974 | # digitpart ::= digit (["_"] digit)*
|
975 | # fraction ::= "." digitpart
|
976 | # exponent ::= ("e" | "E") ["+" | "-"] digitpart
|
977 | # pointfloat ::= [digitpart] fraction | digitpart "."
|
978 | # exponentfloat ::= (digitpart | pointfloat) exponent
|
979 | # floatnumber ::= pointfloat | exponentfloat
|
980 |
|
981 | # NOTE: Borrowing tokens from Arith (i.e. $(( )) ), but not using LexerPairs().
|
982 | LEXER_DEF[lex_mode_e.Expr] = \
|
983 | _VARS + YSH_LEFT_SUBS + YSH_LEFT_UNQUOTED + EXPR_OPS + EXPR_WORDS + \
|
984 | EXPR_CHARS + [
|
985 |
|
986 | # https://docs.python.org/3/reference/lexical_analysis.html#integer-literals
|
987 | #
|
988 | # integer ::= decinteger | bininteger | octinteger | hexinteger
|
989 | # decinteger ::= nonzerodigit (["_"] digit)* | "0"+ (["_"] "0")*
|
990 | # bininteger ::= "0" ("b" | "B") (["_"] bindigit)+
|
991 | # octinteger ::= "0" ("o" | "O") (["_"] octdigit)+
|
992 | # hexinteger ::= "0" ("x" | "X") (["_"] hexdigit)+
|
993 | # nonzerodigit ::= "1"..."9"
|
994 | # digit ::= "0"..."9"
|
995 | # bindigit ::= "0" | "1"
|
996 | # octdigit ::= "0"..."7"
|
997 | # hexdigit ::= digit | "a"..."f" | "A"..."F"
|
998 |
|
999 | R(_DECIMAL_INT_RE, Id.Expr_DecInt),
|
1000 |
|
1001 | R(r'0[bB](_?[01])+', Id.Expr_BinInt),
|
1002 | R(r'0[oO](_?[0-7])+', Id.Expr_OctInt),
|
1003 | R(r'0[xX](_?[0-9a-fA-F])+', Id.Expr_HexInt),
|
1004 |
|
1005 | R(_FLOAT_RE, Id.Expr_Float),
|
1006 |
|
1007 | # These can be looked up as keywords separately, so you enforce that they have
|
1008 | # space around them?
|
1009 | R(VAR_NAME_RE, Id.Expr_Name),
|
1010 |
|
1011 | R('%' + VAR_NAME_RE, Id.Expr_Symbol),
|
1012 |
|
1013 | #
|
1014 | # Arith
|
1015 | #
|
1016 |
|
1017 | C(',', Id.Arith_Comma),
|
1018 | C(':', Id.Arith_Colon), # for slicing a[1:2], and mylist:pop()
|
1019 |
|
1020 | C('?', Id.Arith_QMark), # regex postfix
|
1021 |
|
1022 | C('+', Id.Arith_Plus), # arith infix, regex postfix
|
1023 | C('-', Id.Arith_Minus), # arith infix, regex postfix
|
1024 | C('*', Id.Arith_Star),
|
1025 | C('^', Id.Arith_Caret), # xor
|
1026 | C('/', Id.Arith_Slash),
|
1027 | C('%', Id.Arith_Percent),
|
1028 |
|
1029 | C('**', Id.Arith_DStar), # exponentiation
|
1030 | C('++', Id.Arith_DPlus), # Option for string/list concatenation
|
1031 |
|
1032 | C('<', Id.Arith_Less),
|
1033 | C('>', Id.Arith_Great),
|
1034 | C('<=', Id.Arith_LessEqual),
|
1035 | C('>=', Id.Arith_GreatEqual),
|
1036 | C('===', Id.Expr_TEqual),
|
1037 | C('!==', Id.Expr_NotDEqual),
|
1038 |
|
1039 | C('==', Id.Unknown_DEqual), # user must choose === or ~==
|
1040 |
|
1041 | # Bitwise operators
|
1042 | C('&', Id.Arith_Amp),
|
1043 | C('|', Id.Arith_Pipe),
|
1044 | C('>>', Id.Arith_DGreat),
|
1045 | C('<<', Id.Arith_DLess), # Doesn't Java also have <<< ?
|
1046 |
|
1047 | # Bitwise complement, as well as infix pattern matching
|
1048 | C('~', Id.Arith_Tilde),
|
1049 | C('!~', Id.Expr_NotTilde),
|
1050 | C('~~', Id.Expr_DTilde),
|
1051 | C('!~~', Id.Expr_NotDTilde),
|
1052 |
|
1053 | # Left out for now:
|
1054 | # ++ -- -- needed for loops, awk?
|
1055 | # ! && || -- needed for find dialect
|
1056 | # = += etc.
|
1057 |
|
1058 | C('=', Id.Arith_Equal),
|
1059 |
|
1060 | C('+=', Id.Arith_PlusEqual),
|
1061 | C('-=', Id.Arith_MinusEqual),
|
1062 | C('*=', Id.Arith_StarEqual),
|
1063 | C('/=', Id.Arith_SlashEqual),
|
1064 | C('%=', Id.Arith_PercentEqual),
|
1065 |
|
1066 | C('>>=', Id.Arith_DGreatEqual),
|
1067 | C('<<=', Id.Arith_DLessEqual),
|
1068 | C('&=', Id.Arith_AmpEqual),
|
1069 | C('|=', Id.Arith_PipeEqual),
|
1070 | C('^=', Id.Arith_CaretEqual), # Exponentiation
|
1071 |
|
1072 | # Augmented assignment that YSH has, but sh and OSH don't have
|
1073 | C('**=', Id.Expr_DStarEqual),
|
1074 | C('//=', Id.Expr_DSlashEqual),
|
1075 |
|
1076 | #
|
1077 | # Expr
|
1078 | #
|
1079 |
|
1080 | C('!', Id.Expr_Bang), # For eggex negation
|
1081 |
|
1082 | C('//', Id.Expr_DSlash), # For YSH integer division
|
1083 | C('~==', Id.Expr_TildeDEqual), # approximate equality
|
1084 |
|
1085 | C('.', Id.Expr_Dot), # d.key is alias for d['key']
|
1086 | C('..', Id.Expr_DDot), # range 1..5
|
1087 | C('->', Id.Expr_RArrow), # s->startswith()
|
1088 | C('$', Id.Expr_Dollar), # legacy regex end: /d+ $/ (better written /d+ >/
|
1089 |
|
1090 | # Reserved this. Go uses it for channels, etc.
|
1091 | # I guess it conflicts with -4<-3, but that's OK -- spaces suffices.
|
1092 | C('<-', Id.Expr_Reserved),
|
1093 | C('=>', Id.Expr_RDArrow), # for df => filter(age > 10)
|
1094 | # and match (x) { 1 => "one" }
|
1095 | # note: other languages use |>
|
1096 | # R/dplyr uses %>%
|
1097 |
|
1098 | C('...', Id.Expr_Ellipsis), # f(...args) and maybe a[:, ...]
|
1099 |
|
1100 | # For multiline regex literals?
|
1101 | C('///', Id.Expr_Reserved),
|
1102 |
|
1103 | # Splat operators
|
1104 | C('@', Id.Expr_At),
|
1105 | # NOTE: Unused
|
1106 | C('@@', Id.Expr_DoubleAt),
|
1107 | ] + _EXPR_NEWLINE_COMMENT + _EXPR_ARITH_SHARED
|
1108 |
|
1109 | LEXER_DEF[lex_mode_e.FuncParens] = [
|
1110 | # () with spaces
|
1111 | R(r'[ \t]*\([ \t]*\)', Id.LookAhead_FuncParens),
|
1112 | # anything else
|
1113 | R(r'[^\0]', Id.Unknown_Tok)
|
1114 | ]
|