| 1 | /*
 | 
| 2 |  * Souffle - A Datalog Compiler
 | 
| 3 |  * Copyright (c) 2013, 2015, Oracle and/or its affiliates. All rights reserved
 | 
| 4 |  * Licensed under the Universal Permissive License v 1.0 as shown at:
 | 
| 5 |  * - https://opensource.org/licenses/UPL
 | 
| 6 |  * - <souffle root>/licenses/SOUFFLE-UPL.txt
 | 
| 7 |  */
 | 
| 8 | 
 | 
| 9 | /************************************************************************
 | 
| 10 |  *
 | 
| 11 |  * @file BTree.h
 | 
| 12 |  *
 | 
| 13 |  * An implementation of a generic B-tree data structure including
 | 
| 14 |  * interfaces for utilizing instances as set or multiset containers.
 | 
| 15 |  *
 | 
| 16 |  ***********************************************************************/
 | 
| 17 | 
 | 
| 18 | #pragma once
 | 
| 19 | 
 | 
| 20 | #include "souffle/datastructure/BTreeUtil.h"
 | 
| 21 | #include "souffle/utility/CacheUtil.h"
 | 
| 22 | #include "souffle/utility/ContainerUtil.h"
 | 
| 23 | #include "souffle/utility/MiscUtil.h"
 | 
| 24 | #include "souffle/utility/ParallelUtil.h"
 | 
| 25 | #include <algorithm>
 | 
| 26 | #include <cassert>
 | 
| 27 | #include <cstddef>
 | 
| 28 | #include <cstdint>
 | 
| 29 | #include <iostream>
 | 
| 30 | #include <iterator>
 | 
| 31 | #include <string>
 | 
| 32 | #include <tuple>
 | 
| 33 | #include <type_traits>
 | 
| 34 | #include <typeinfo>
 | 
| 35 | #include <vector>
 | 
| 36 | 
 | 
| 37 | namespace souffle {
 | 
| 38 | 
 | 
| 39 | namespace detail {
 | 
| 40 | 
 | 
| 41 | /**
 | 
| 42 |  * The actual implementation of a b-tree data structure.
 | 
| 43 |  *
 | 
| 44 |  * @tparam Key             .. the element type to be stored in this tree
 | 
| 45 |  * @tparam Comparator     .. a class defining an order on the stored elements
 | 
| 46 |  * @tparam Allocator     .. utilized for allocating memory for required nodes
 | 
| 47 |  * @tparam blockSize    .. determines the number of bytes/block utilized by leaf nodes
 | 
| 48 |  * @tparam SearchStrategy .. enables switching between linear, binary or any other search strategy
 | 
| 49 |  * @tparam isSet        .. true = set, false = multiset
 | 
| 50 |  */
 | 
| 51 | template <typename Key, typename Comparator,
 | 
| 52 |         typename Allocator,  // is ignored so far - TODO: add support
 | 
| 53 |         unsigned blockSize, typename SearchStrategy, bool isSet, typename WeakComparator = Comparator,
 | 
| 54 |         typename Updater = detail::updater<Key>>
 | 
| 55 | class btree {
 | 
| 56 | public:
 | 
| 57 |     class iterator;
 | 
| 58 |     using const_iterator = iterator;
 | 
| 59 | 
 | 
| 60 |     using key_type = Key;
 | 
| 61 |     using element_type = Key;
 | 
| 62 |     using chunk = range<iterator>;
 | 
| 63 | 
 | 
| 64 | protected:
 | 
| 65 |     /* ------------- static utilities ----------------- */
 | 
| 66 | 
 | 
| 67 |     const static SearchStrategy search;
 | 
| 68 | 
 | 
| 69 |     /* ---------- comparison utilities ---------------- */
 | 
| 70 | 
 | 
| 71 |     mutable Comparator comp;
 | 
| 72 | 
 | 
| 73 |     bool less(const Key& a, const Key& b) const {
 | 
| 74 |         return comp.less(a, b);
 | 
| 75 |     }
 | 
| 76 | 
 | 
| 77 |     bool equal(const Key& a, const Key& b) const {
 | 
| 78 |         return comp.equal(a, b);
 | 
| 79 |     }
 | 
| 80 | 
 | 
| 81 |     mutable WeakComparator weak_comp;
 | 
| 82 | 
 | 
| 83 |     bool weak_less(const Key& a, const Key& b) const {
 | 
| 84 |         return weak_comp.less(a, b);
 | 
| 85 |     }
 | 
| 86 | 
 | 
| 87 |     bool weak_equal(const Key& a, const Key& b) const {
 | 
| 88 |         return weak_comp.equal(a, b);
 | 
| 89 |     }
 | 
| 90 | 
 | 
| 91 |     /* -------------- updater utilities ------------- */
 | 
| 92 | 
 | 
| 93 |     mutable Updater upd;
 | 
| 94 |     bool update(Key& old_k, const Key& new_k) {
 | 
| 95 |         return upd.update(old_k, new_k);
 | 
| 96 |     }
 | 
| 97 | 
 | 
| 98 |     /* -------------- the node type ----------------- */
 | 
| 99 | 
 | 
| 100 |     using size_type = std::size_t;
 | 
| 101 |     using field_index_type = uint8_t;
 | 
| 102 |     using lock_type = OptimisticReadWriteLock;
 | 
| 103 | 
 | 
| 104 |     struct node;
 | 
| 105 | 
 | 
| 106 |     /**
 | 
| 107 |      * The base type of all node types containing essential
 | 
| 108 |      * book-keeping information.
 | 
| 109 |      */
 | 
| 110 |     struct base {
 | 
| 111 | #ifdef IS_PARALLEL
 | 
| 112 | 
 | 
| 113 |         // the parent node
 | 
| 114 |         node* volatile parent;
 | 
| 115 | 
 | 
| 116 |         // a lock for synchronizing parallel operations on this node
 | 
| 117 |         lock_type lock;
 | 
| 118 | 
 | 
| 119 |         // the number of keys in this node
 | 
| 120 |         volatile size_type numElements;
 | 
| 121 | 
 | 
| 122 |         // the position in the parent node
 | 
| 123 |         volatile field_index_type position;
 | 
| 124 | #else
 | 
| 125 |         // the parent node
 | 
| 126 |         node* parent;
 | 
| 127 | 
 | 
| 128 |         // the number of keys in this node
 | 
| 129 |         size_type numElements;
 | 
| 130 | 
 | 
| 131 |         // the position in the parent node
 | 
| 132 |         field_index_type position;
 | 
| 133 | #endif
 | 
| 134 | 
 | 
| 135 |         // a flag indicating whether this is a inner node or not
 | 
| 136 |         const bool inner;
 | 
| 137 | 
 | 
| 138 |         /**
 | 
| 139 |          * A simple constructor for nodes
 | 
| 140 |          */
 | 
| 141 |         base(bool inner) : parent(nullptr), numElements(0), position(0), inner(inner) {}
 | 
| 142 | 
 | 
| 143 |         bool isLeaf() const {
 | 
| 144 |             return !inner;
 | 
| 145 |         }
 | 
| 146 | 
 | 
| 147 |         bool isInner() const {
 | 
| 148 |             return inner;
 | 
| 149 |         }
 | 
| 150 | 
 | 
| 151 |         node* getParent() const {
 | 
| 152 |             return parent;
 | 
| 153 |         }
 | 
| 154 | 
 | 
| 155 |         field_index_type getPositionInParent() const {
 | 
| 156 |             return position;
 | 
| 157 |         }
 | 
| 158 | 
 | 
| 159 |         size_type getNumElements() const {
 | 
| 160 |             return numElements;
 | 
| 161 |         }
 | 
| 162 |     };
 | 
| 163 | 
 | 
| 164 |     struct inner_node;
 | 
| 165 | 
 | 
| 166 |     /**
 | 
| 167 |      * The actual, generic node implementation covering the operations
 | 
| 168 |      * for both, inner and leaf nodes.
 | 
| 169 |      */
 | 
| 170 |     struct node : public base {
 | 
| 171 |         /**
 | 
| 172 |          * The number of keys/node desired by the user.
 | 
| 173 |          */
 | 
| 174 |         static constexpr std::size_t desiredNumKeys =
 | 
| 175 |                 ((blockSize > sizeof(base)) ? blockSize - sizeof(base) : 0) / sizeof(Key);
 | 
| 176 | 
 | 
| 177 |         /**
 | 
| 178 |          * The actual number of keys/node corrected by functional requirements.
 | 
| 179 |          */
 | 
| 180 |         static constexpr std::size_t maxKeys = (desiredNumKeys > 3) ? desiredNumKeys : 3;
 | 
| 181 | 
 | 
| 182 |         // the keys stored in this node
 | 
| 183 |         Key keys[maxKeys];
 | 
| 184 | 
 | 
| 185 |         // a simple constructor
 | 
| 186 |         node(bool inner) : base(inner) {}
 | 
| 187 | 
 | 
| 188 |         /**
 | 
| 189 |          * A deep-copy operation creating a clone of this node.
 | 
| 190 |          */
 | 
| 191 |         node* clone() const {
 | 
| 192 |             // create a clone of this node
 | 
| 193 |             node* res = (this->isInner()) ? static_cast<node*>(new inner_node())
 | 
| 194 |                                           : static_cast<node*>(new leaf_node());
 | 
| 195 | 
 | 
| 196 |             // copy basic fields
 | 
| 197 |             res->position = this->position;
 | 
| 198 |             res->numElements = this->numElements;
 | 
| 199 | 
 | 
| 200 |             for (size_type i = 0; i < this->numElements; ++i) {
 | 
| 201 |                 res->keys[i] = this->keys[i];
 | 
| 202 |             }
 | 
| 203 | 
 | 
| 204 |             // if this is a leaf we are done
 | 
| 205 |             if (this->isLeaf()) {
 | 
| 206 |                 return res;
 | 
| 207 |             }
 | 
| 208 | 
 | 
| 209 |             // copy child nodes recursively
 | 
| 210 |             auto* ires = (inner_node*)res;
 | 
| 211 |             for (size_type i = 0; i <= this->numElements; ++i) {
 | 
| 212 |                 ires->children[i] = this->getChild(i)->clone();
 | 
| 213 |                 ires->children[i]->parent = res;
 | 
| 214 |             }
 | 
| 215 | 
 | 
| 216 |             // that's it
 | 
| 217 |             return res;
 | 
| 218 |         }
 | 
| 219 | 
 | 
| 220 |         /**
 | 
| 221 |          * A utility function providing a reference to this node as
 | 
| 222 |          * an inner node.
 | 
| 223 |          */
 | 
| 224 |         inner_node& asInnerNode() {
 | 
| 225 |             assert(this->inner && "Invalid cast!");
 | 
| 226 |             return *static_cast<inner_node*>(this);
 | 
| 227 |         }
 | 
| 228 | 
 | 
| 229 |         /**
 | 
| 230 |          * A utility function providing a reference to this node as
 | 
| 231 |          * a const inner node.
 | 
| 232 |          */
 | 
| 233 |         const inner_node& asInnerNode() const {
 | 
| 234 |             assert(this->inner && "Invalid cast!");
 | 
| 235 |             return *static_cast<const inner_node*>(this);
 | 
| 236 |         }
 | 
| 237 | 
 | 
| 238 |         /**
 | 
| 239 |          * Computes the number of nested levels of the tree rooted
 | 
| 240 |          * by this node.
 | 
| 241 |          */
 | 
| 242 |         size_type getDepth() const {
 | 
| 243 |             if (this->isLeaf()) {
 | 
| 244 |                 return 1;
 | 
| 245 |             }
 | 
| 246 |             return getChild(0)->getDepth() + 1;
 | 
| 247 |         }
 | 
| 248 | 
 | 
| 249 |         /**
 | 
| 250 |          * Counts the number of nodes contained in the sub-tree rooted
 | 
| 251 |          * by this node.
 | 
| 252 |          */
 | 
| 253 |         size_type countNodes() const {
 | 
| 254 |             if (this->isLeaf()) {
 | 
| 255 |                 return 1;
 | 
| 256 |             }
 | 
| 257 |             size_type sum = 1;
 | 
| 258 |             for (unsigned i = 0; i <= this->numElements; ++i) {
 | 
| 259 |                 sum += getChild(i)->countNodes();
 | 
| 260 |             }
 | 
| 261 |             return sum;
 | 
| 262 |         }
 | 
| 263 | 
 | 
| 264 |         /**
 | 
| 265 |          * Counts the number of entries contained in the sub-tree rooted
 | 
| 266 |          * by this node.
 | 
| 267 |          */
 | 
| 268 |         size_type countEntries() const {
 | 
| 269 |             if (this->isLeaf()) {
 | 
| 270 |                 return this->numElements;
 | 
| 271 |             }
 | 
| 272 |             size_type sum = this->numElements;
 | 
| 273 |             for (unsigned i = 0; i <= this->numElements; ++i) {
 | 
| 274 |                 sum += getChild(i)->countEntries();
 | 
| 275 |             }
 | 
| 276 |             return sum;
 | 
| 277 |         }
 | 
| 278 | 
 | 
| 279 |         /**
 | 
| 280 |          * Determines the amount of memory used by the sub-tree rooted
 | 
| 281 |          * by this node.
 | 
| 282 |          */
 | 
| 283 |         size_type getMemoryUsage() const {
 | 
| 284 |             if (this->isLeaf()) {
 | 
| 285 |                 return sizeof(leaf_node);
 | 
| 286 |             }
 | 
| 287 |             size_type res = sizeof(inner_node);
 | 
| 288 |             for (unsigned i = 0; i <= this->numElements; ++i) {
 | 
| 289 |                 res += getChild(i)->getMemoryUsage();
 | 
| 290 |             }
 | 
| 291 |             return res;
 | 
| 292 |         }
 | 
| 293 | 
 | 
| 294 |         /**
 | 
| 295 |          * Obtains a pointer to the array of child-pointers
 | 
| 296 |          * of this node -- if it is an inner node.
 | 
| 297 |          */
 | 
| 298 |         node** getChildren() {
 | 
| 299 |             return asInnerNode().children;
 | 
| 300 |         }
 | 
| 301 | 
 | 
| 302 |         /**
 | 
| 303 |          * Obtains a pointer to the array of const child-pointers
 | 
| 304 |          * of this node -- if it is an inner node.
 | 
| 305 |          */
 | 
| 306 |         node* const* getChildren() const {
 | 
| 307 |             return asInnerNode().children;
 | 
| 308 |         }
 | 
| 309 | 
 | 
| 310 |         /**
 | 
| 311 |          * Obtains a reference to the child of the given index.
 | 
| 312 |          */
 | 
| 313 |         node* getChild(size_type s) const {
 | 
| 314 |             return asInnerNode().children[s];
 | 
| 315 |         }
 | 
| 316 | 
 | 
| 317 |         /**
 | 
| 318 |          * Checks whether this node is empty -- can happen due to biased insertion.
 | 
| 319 |          */
 | 
| 320 |         bool isEmpty() const {
 | 
| 321 |             return this->numElements == 0;
 | 
| 322 |         }
 | 
| 323 | 
 | 
| 324 |         /**
 | 
| 325 |          * Checks whether this node is full.
 | 
| 326 |          */
 | 
| 327 |         bool isFull() const {
 | 
| 328 |             return this->numElements == maxKeys;
 | 
| 329 |         }
 | 
| 330 | 
 | 
| 331 |         /**
 | 
| 332 |          * Obtains the point at which full nodes should be split.
 | 
| 333 |          * Conventional b-trees always split in half. However, in cases
 | 
| 334 |          * where in-order insertions are frequent, a split assigning
 | 
| 335 |          * larger portions to the right fragment provide higher performance
 | 
| 336 |          * and a better node-filling rate.
 | 
| 337 |          */
 | 
| 338 |         int getSplitPoint(int /*unused*/) {
 | 
| 339 |             return static_cast<int>(std::min(3 * maxKeys / 4, maxKeys - 2));
 | 
| 340 |         }
 | 
| 341 | 
 | 
| 342 |         /**
 | 
| 343 |          * Splits this node.
 | 
| 344 |          *
 | 
| 345 |          * @param root .. a pointer to the root-pointer of the enclosing b-tree
 | 
| 346 |          *                 (might have to be updated if the root-node needs to be split)
 | 
| 347 |          * @param idx  .. the position of the insert causing the split
 | 
| 348 |          */
 | 
| 349 | #ifdef IS_PARALLEL
 | 
| 350 |         void split(node** root, lock_type& root_lock, int idx, std::vector<node*>& locked_nodes) {
 | 
| 351 |             assert(this->lock.is_write_locked());
 | 
| 352 |             assert(!this->parent || this->parent->lock.is_write_locked());
 | 
| 353 |             assert((this->parent != nullptr) || root_lock.is_write_locked());
 | 
| 354 |             assert(this->isLeaf() || souffle::contains(locked_nodes, this));
 | 
| 355 |             assert(!this->parent || souffle::contains(locked_nodes, const_cast<node*>(this->parent)));
 | 
| 356 | #else
 | 
| 357 |         void split(node** root, lock_type& root_lock, int idx) {
 | 
| 358 | #endif
 | 
| 359 |             assert(this->numElements == maxKeys);
 | 
| 360 | 
 | 
| 361 |             // get middle element
 | 
| 362 |             int split_point = getSplitPoint(idx);
 | 
| 363 | 
 | 
| 364 |             // create a new sibling node
 | 
| 365 |             node* sibling = (this->inner) ? static_cast<node*>(new inner_node())
 | 
| 366 |                                           : static_cast<node*>(new leaf_node());
 | 
| 367 | 
 | 
| 368 | #ifdef IS_PARALLEL
 | 
| 369 |             // lock sibling
 | 
| 370 |             sibling->lock.start_write();
 | 
| 371 |             locked_nodes.push_back(sibling);
 | 
| 372 | #endif
 | 
| 373 | 
 | 
| 374 |             // move data over to the new node
 | 
| 375 |             for (unsigned i = split_point + 1, j = 0; i < maxKeys; ++i, ++j) {
 | 
| 376 |                 sibling->keys[j] = keys[i];
 | 
| 377 |             }
 | 
| 378 | 
 | 
| 379 |             // move child pointers
 | 
| 380 |             if (this->inner) {
 | 
| 381 |                 // move pointers to sibling
 | 
| 382 |                 auto* other = static_cast<inner_node*>(sibling);
 | 
| 383 |                 for (unsigned i = split_point + 1, j = 0; i <= maxKeys; ++i, ++j) {
 | 
| 384 |                     other->children[j] = getChildren()[i];
 | 
| 385 |                     other->children[j]->parent = other;
 | 
| 386 |                     other->children[j]->position = static_cast<field_index_type>(j);
 | 
| 387 |                 }
 | 
| 388 |             }
 | 
| 389 | 
 | 
| 390 |             // update number of elements
 | 
| 391 |             this->numElements = split_point;
 | 
| 392 |             sibling->numElements = maxKeys - split_point - 1;
 | 
| 393 | 
 | 
| 394 |             // update parent
 | 
| 395 | #ifdef IS_PARALLEL
 | 
| 396 |             grow_parent(root, root_lock, sibling, locked_nodes);
 | 
| 397 | #else
 | 
| 398 |             grow_parent(root, root_lock, sibling);
 | 
| 399 | #endif
 | 
| 400 |         }
 | 
| 401 | 
 | 
| 402 |         /**
 | 
| 403 |          * Moves keys from this node to one of its siblings or splits
 | 
| 404 |          * this node to make some space for the insertion of an element at
 | 
| 405 |          * position idx.
 | 
| 406 |          *
 | 
| 407 |          * Returns the number of elements moved to the left side, 0 in case
 | 
| 408 |          * of a split. The number of moved elements will be <= the given idx.
 | 
| 409 |          *
 | 
| 410 |          * @param root .. the root node of the b-tree being part of
 | 
| 411 |          * @param idx  .. the position of the insert triggering this operation
 | 
| 412 |          */
 | 
| 413 |         // TODO: remove root_lock ... no longer needed
 | 
| 414 | #ifdef IS_PARALLEL
 | 
| 415 |         int rebalance_or_split(node** root, lock_type& root_lock, int idx, std::vector<node*>& locked_nodes) {
 | 
| 416 |             assert(this->lock.is_write_locked());
 | 
| 417 |             assert(!this->parent || this->parent->lock.is_write_locked());
 | 
| 418 |             assert((this->parent != nullptr) || root_lock.is_write_locked());
 | 
| 419 |             assert(this->isLeaf() || souffle::contains(locked_nodes, this));
 | 
| 420 |             assert(!this->parent || souffle::contains(locked_nodes, const_cast<node*>(this->parent)));
 | 
| 421 | #else
 | 
| 422 |         int rebalance_or_split(node** root, lock_type& root_lock, int idx) {
 | 
| 423 | #endif
 | 
| 424 | 
 | 
| 425 |             // this node is full ... and needs some space
 | 
| 426 |             assert(this->numElements == maxKeys);
 | 
| 427 | 
 | 
| 428 |             // get snap-shot of parent
 | 
| 429 |             auto parent = this->parent;
 | 
| 430 |             auto pos = this->position;
 | 
| 431 | 
 | 
| 432 |             // Option A) re-balance data
 | 
| 433 |             if (parent && pos > 0) {
 | 
| 434 |                 node* left = parent->getChild(pos - 1);
 | 
| 435 | 
 | 
| 436 | #ifdef IS_PARALLEL
 | 
| 437 |                 // lock access to left sibling
 | 
| 438 |                 if (!left->lock.try_start_write()) {
 | 
| 439 |                     // left node is currently updated => skip balancing and split
 | 
| 440 |                     split(root, root_lock, idx, locked_nodes);
 | 
| 441 |                     return 0;
 | 
| 442 |                 }
 | 
| 443 | #endif
 | 
| 444 | 
 | 
| 445 |                 // compute number of elements to be movable to left
 | 
| 446 |                 //    space available in left vs. insertion index
 | 
| 447 |                 size_type num = static_cast<size_type>(
 | 
| 448 |                         std::min<int>(static_cast<int>(maxKeys - left->numElements), idx));
 | 
| 449 | 
 | 
| 450 |                 // if there are elements to move ..
 | 
| 451 |                 if (num > 0) {
 | 
| 452 |                     Key* splitter = &(parent->keys[this->position - 1]);
 | 
| 453 | 
 | 
| 454 |                     // .. move keys to left node
 | 
| 455 |                     left->keys[left->numElements] = *splitter;
 | 
| 456 |                     for (size_type i = 0; i < num - 1; ++i) {
 | 
| 457 |                         left->keys[left->numElements + 1 + i] = keys[i];
 | 
| 458 |                     }
 | 
| 459 |                     *splitter = keys[num - 1];
 | 
| 460 | 
 | 
| 461 |                     // shift keys in this node to the left
 | 
| 462 |                     for (size_type i = 0; i < this->numElements - num; ++i) {
 | 
| 463 |                         keys[i] = keys[i + num];
 | 
| 464 |                     }
 | 
| 465 | 
 | 
| 466 |                     // .. and children if necessary
 | 
| 467 |                     if (this->isInner()) {
 | 
| 468 |                         auto* ileft = static_cast<inner_node*>(left);
 | 
| 469 |                         auto* iright = static_cast<inner_node*>(this);
 | 
| 470 | 
 | 
| 471 |                         // move children
 | 
| 472 |                         for (field_index_type i = 0; i < num; ++i) {
 | 
| 473 |                             ileft->children[left->numElements + i + 1] = iright->children[i];
 | 
| 474 |                         }
 | 
| 475 | 
 | 
| 476 |                         // update moved children
 | 
| 477 |                         for (size_type i = 0; i < num; ++i) {
 | 
| 478 |                             iright->children[i]->parent = ileft;
 | 
| 479 |                             iright->children[i]->position =
 | 
| 480 |                                     static_cast<field_index_type>(left->numElements + i) + 1;
 | 
| 481 |                         }
 | 
| 482 | 
 | 
| 483 |                         // shift child-pointer to the left
 | 
| 484 |                         for (size_type i = 0; i < this->numElements - num + 1; ++i) {
 | 
| 485 |                             iright->children[i] = iright->children[i + num];
 | 
| 486 |                         }
 | 
| 487 | 
 | 
| 488 |                         // update position of children
 | 
| 489 |                         for (size_type i = 0; i < this->numElements - num + 1; ++i) {
 | 
| 490 |                             iright->children[i]->position = static_cast<field_index_type>(i);
 | 
| 491 |                         }
 | 
| 492 |                     }
 | 
| 493 | 
 | 
| 494 |                     // update node sizes
 | 
| 495 |                     left->numElements += num;
 | 
| 496 |                     this->numElements -= num;
 | 
| 497 | 
 | 
| 498 | #ifdef IS_PARALLEL
 | 
| 499 |                     left->lock.end_write();
 | 
| 500 | #endif
 | 
| 501 | 
 | 
| 502 |                     // done
 | 
| 503 |                     return static_cast<int>(num);
 | 
| 504 |                 }
 | 
| 505 | 
 | 
| 506 | #ifdef IS_PARALLEL
 | 
| 507 |                 left->lock.abort_write();
 | 
| 508 | #endif
 | 
| 509 |             }
 | 
| 510 | 
 | 
| 511 |             // Option B) split node
 | 
| 512 | #ifdef IS_PARALLEL
 | 
| 513 |             split(root, root_lock, idx, locked_nodes);
 | 
| 514 | #else
 | 
| 515 |             split(root, root_lock, idx);
 | 
| 516 | #endif
 | 
| 517 |             return 0;  // = no re-balancing
 | 
| 518 |         }
 | 
| 519 | 
 | 
| 520 |     private:
 | 
| 521 |         /**
 | 
| 522 |          * Inserts a new sibling into the parent of this node utilizing
 | 
| 523 |          * the last key of this node as a separation key. (for internal
 | 
| 524 |          * use only)
 | 
| 525 |          *
 | 
| 526 |          * @param root .. a pointer to the root-pointer of the containing tree
 | 
| 527 |          * @param sibling .. the new right-sibling to be add to the parent node
 | 
| 528 |          */
 | 
| 529 | #ifdef IS_PARALLEL
 | 
| 530 |         void grow_parent(node** root, lock_type& root_lock, node* sibling, std::vector<node*>& locked_nodes) {
 | 
| 531 |             assert(this->lock.is_write_locked());
 | 
| 532 |             assert(!this->parent || this->parent->lock.is_write_locked());
 | 
| 533 |             assert((this->parent != nullptr) || root_lock.is_write_locked());
 | 
| 534 |             assert(this->isLeaf() || souffle::contains(locked_nodes, this));
 | 
| 535 |             assert(!this->parent || souffle::contains(locked_nodes, const_cast<node*>(this->parent)));
 | 
| 536 | #else
 | 
| 537 |         void grow_parent(node** root, lock_type& root_lock, node* sibling) {
 | 
| 538 | #endif
 | 
| 539 | 
 | 
| 540 |             if (this->parent == nullptr) {
 | 
| 541 |                 assert(*root == this);
 | 
| 542 | 
 | 
| 543 |                 // create a new root node
 | 
| 544 |                 auto* new_root = new inner_node();
 | 
| 545 |                 new_root->numElements = 1;
 | 
| 546 |                 new_root->keys[0] = keys[this->numElements];
 | 
| 547 | 
 | 
| 548 |                 new_root->children[0] = this;
 | 
| 549 |                 new_root->children[1] = sibling;
 | 
| 550 | 
 | 
| 551 |                 // link this and the sibling node to new root
 | 
| 552 |                 this->parent = new_root;
 | 
| 553 |                 sibling->parent = new_root;
 | 
| 554 |                 sibling->position = 1;
 | 
| 555 | 
 | 
| 556 |                 // switch root node
 | 
| 557 |                 *root = new_root;
 | 
| 558 | 
 | 
| 559 |             } else {
 | 
| 560 |                 // insert new element in parent element
 | 
| 561 |                 auto parent = this->parent;
 | 
| 562 |                 auto pos = this->position;
 | 
| 563 | 
 | 
| 564 | #ifdef IS_PARALLEL
 | 
| 565 |                 parent->insert_inner(
 | 
| 566 |                         root, root_lock, pos, this, keys[this->numElements], sibling, locked_nodes);
 | 
| 567 | #else
 | 
| 568 |                 parent->insert_inner(root, root_lock, pos, this, keys[this->numElements], sibling);
 | 
| 569 | #endif
 | 
| 570 |             }
 | 
| 571 |         }
 | 
| 572 | 
 | 
| 573 |         /**
 | 
| 574 |          * Inserts a new element into an inner node (for internal use only).
 | 
| 575 |          *
 | 
| 576 |          * @param root .. a pointer to the root-pointer of the containing tree
 | 
| 577 |          * @param pos  .. the position to insert the new key
 | 
| 578 |          * @param key  .. the key to insert
 | 
| 579 |          * @param newNode .. the new right-child of the inserted key
 | 
| 580 |          */
 | 
| 581 | #ifdef IS_PARALLEL
 | 
| 582 |         void insert_inner(node** root, lock_type& root_lock, unsigned pos, node* predecessor, const Key& key,
 | 
| 583 |                 node* newNode, std::vector<node*>& locked_nodes) {
 | 
| 584 |             assert(this->lock.is_write_locked());
 | 
| 585 |             assert(souffle::contains(locked_nodes, this));
 | 
| 586 | #else
 | 
| 587 |         void insert_inner(node** root, lock_type& root_lock, unsigned pos, node* predecessor, const Key& key,
 | 
| 588 |                 node* newNode) {
 | 
| 589 | #endif
 | 
| 590 | 
 | 
| 591 |             // check capacity
 | 
| 592 |             if (this->numElements >= maxKeys) {
 | 
| 593 | #ifdef IS_PARALLEL
 | 
| 594 |                 assert(!this->parent || this->parent->lock.is_write_locked());
 | 
| 595 |                 assert((this->parent) || root_lock.is_write_locked());
 | 
| 596 |                 assert(!this->parent || souffle::contains(locked_nodes, const_cast<node*>(this->parent)));
 | 
| 597 | #endif
 | 
| 598 | 
 | 
| 599 |                 // split this node
 | 
| 600 | #ifdef IS_PARALLEL
 | 
| 601 |                 pos -= rebalance_or_split(root, root_lock, pos, locked_nodes);
 | 
| 602 | #else
 | 
| 603 |                 pos -= rebalance_or_split(root, root_lock, pos);
 | 
| 604 | #endif
 | 
| 605 | 
 | 
| 606 |                 // complete insertion within new sibling if necessary
 | 
| 607 |                 if (pos > this->numElements) {
 | 
| 608 |                     // correct position
 | 
| 609 |                     pos = pos - static_cast<unsigned int>(this->numElements) - 1;
 | 
| 610 | 
 | 
| 611 |                     // get new sibling
 | 
| 612 |                     auto other = this->parent->getChild(this->position + 1);
 | 
| 613 | 
 | 
| 614 | #ifdef IS_PARALLEL
 | 
| 615 |                     // make sure other side is write locked
 | 
| 616 |                     assert(other->lock.is_write_locked());
 | 
| 617 |                     assert(souffle::contains(locked_nodes, other));
 | 
| 618 | 
 | 
| 619 |                     // search for new position (since other may have been altered in the meanwhile)
 | 
| 620 |                     size_type i = 0;
 | 
| 621 |                     for (; i <= other->numElements; ++i) {
 | 
| 622 |                         if (other->getChild(i) == predecessor) {
 | 
| 623 |                             break;
 | 
| 624 |                         }
 | 
| 625 |                     }
 | 
| 626 | 
 | 
| 627 |                     pos = (i > static_cast<unsigned>(other->numElements)) ? 0 : static_cast<unsigned>(i);
 | 
| 628 |                     other->insert_inner(root, root_lock, pos, predecessor, key, newNode, locked_nodes);
 | 
| 629 | #else
 | 
| 630 |                     other->insert_inner(root, root_lock, pos, predecessor, key, newNode);
 | 
| 631 | #endif
 | 
| 632 |                     return;
 | 
| 633 |                 }
 | 
| 634 |             }
 | 
| 635 | 
 | 
| 636 |             // move bigger keys one forward
 | 
| 637 |             for (int i = static_cast<int>(this->numElements) - 1; i >= (int)pos; --i) {
 | 
| 638 |                 keys[i + 1] = keys[i];
 | 
| 639 |                 getChildren()[i + 2] = getChildren()[i + 1];
 | 
| 640 |                 ++getChildren()[i + 2]->position;
 | 
| 641 |             }
 | 
| 642 | 
 | 
| 643 |             // ensure proper position
 | 
| 644 |             assert(getChild(pos) == predecessor);
 | 
| 645 | 
 | 
| 646 |             // insert new element
 | 
| 647 |             keys[pos] = key;
 | 
| 648 |             getChildren()[pos + 1] = newNode;
 | 
| 649 |             newNode->parent = this;
 | 
| 650 |             newNode->position = static_cast<field_index_type>(pos) + 1;
 | 
| 651 |             ++this->numElements;
 | 
| 652 |         }
 | 
| 653 | 
 | 
| 654 |     public:
 | 
| 655 |         /**
 | 
| 656 |          * Prints a textual representation of this tree to the given output stream.
 | 
| 657 |          * This feature is mainly intended for debugging and tuning purposes.
 | 
| 658 |          *
 | 
| 659 |          * @see btree::printTree
 | 
| 660 |          */
 | 
| 661 |         void printTree(std::ostream& out, const std::string& prefix) const {
 | 
| 662 |             // print the header
 | 
| 663 |             out << prefix << "@" << this << "[" << ((int)(this->position)) << "] - "
 | 
| 664 |                 << (this->inner ? "i" : "") << "node : " << this->numElements << "/" << maxKeys << " [";
 | 
| 665 | 
 | 
| 666 |             // print the keys
 | 
| 667 |             for (unsigned i = 0; i < this->numElements; i++) {
 | 
| 668 |                 out << keys[i];
 | 
| 669 |                 if (i != this->numElements - 1) {
 | 
| 670 |                     out << ",";
 | 
| 671 |                 }
 | 
| 672 |             }
 | 
| 673 |             out << "]";
 | 
| 674 | 
 | 
| 675 |             // print references to children
 | 
| 676 |             if (this->inner) {
 | 
| 677 |                 out << " - [";
 | 
| 678 |                 for (unsigned i = 0; i <= this->numElements; i++) {
 | 
| 679 |                     out << getChildren()[i];
 | 
| 680 |                     if (i != this->numElements) {
 | 
| 681 |                         out << ",";
 | 
| 682 |                     }
 | 
| 683 |                 }
 | 
| 684 |                 out << "]";
 | 
| 685 |             }
 | 
| 686 | 
 | 
| 687 | #ifdef IS_PARALLEL
 | 
| 688 |             // print the lock state
 | 
| 689 |             if (this->lock.is_write_locked()) {
 | 
| 690 |                 std::cout << " locked";
 | 
| 691 |             }
 | 
| 692 | #endif
 | 
| 693 | 
 | 
| 694 |             out << "\n";
 | 
| 695 | 
 | 
| 696 |             // print the children recursively
 | 
| 697 |             if (this->inner) {
 | 
| 698 |                 for (unsigned i = 0; i < this->numElements + 1; ++i) {
 | 
| 699 |                     static_cast<const inner_node*>(this)->children[i]->printTree(out, prefix + "    ");
 | 
| 700 |                 }
 | 
| 701 |             }
 | 
| 702 |         }
 | 
| 703 | 
 | 
| 704 |         /**
 | 
| 705 |          * A function decomposing the sub-tree rooted by this node into approximately equally
 | 
| 706 |          * sized chunks. To minimize computational overhead, no strict load balance nor limit
 | 
| 707 |          * on the number of actual chunks is given.
 | 
| 708 |          *
 | 
| 709 |          * @see btree::getChunks()
 | 
| 710 |          *
 | 
| 711 |          * @param res   .. the list of chunks to be extended
 | 
| 712 |          * @param num   .. the number of chunks to be produced
 | 
| 713 |          * @param begin .. the iterator to start the first chunk with
 | 
| 714 |          * @param end   .. the iterator to end the last chunk with
 | 
| 715 |          * @return the handed in list of chunks extended by generated chunks
 | 
| 716 |          */
 | 
| 717 |         std::vector<chunk>& collectChunks(
 | 
| 718 |                 std::vector<chunk>& res, size_type num, const iterator& begin, const iterator& end) const {
 | 
| 719 |             assert(num > 0);
 | 
| 720 | 
 | 
| 721 |             // special case: this node is empty
 | 
| 722 |             if (isEmpty()) {
 | 
| 723 |                 if (begin != end) {
 | 
| 724 |                     res.push_back(chunk(begin, end));
 | 
| 725 |                 }
 | 
| 726 |                 return res;
 | 
| 727 |             }
 | 
| 728 | 
 | 
| 729 |             // special case: a single chunk is requested
 | 
| 730 |             if (num == 1) {
 | 
| 731 |                 res.push_back(chunk(begin, end));
 | 
| 732 |                 return res;
 | 
| 733 |             }
 | 
| 734 | 
 | 
| 735 |             // cut-off
 | 
| 736 |             if (this->isLeaf() || num < (this->numElements + 1)) {
 | 
| 737 |                 auto step = this->numElements / num;
 | 
| 738 |                 if (step == 0) {
 | 
| 739 |                     step = 1;
 | 
| 740 |                 }
 | 
| 741 | 
 | 
| 742 |                 size_type i = 0;
 | 
| 743 | 
 | 
| 744 |                 // the first chunk starts at the begin
 | 
| 745 |                 res.push_back(chunk(begin, iterator(this, static_cast<field_index_type>(step) - 1)));
 | 
| 746 | 
 | 
| 747 |                 // split up the main part
 | 
| 748 |                 for (i = step - 1; i < this->numElements - step; i += step) {
 | 
| 749 |                     res.push_back(chunk(iterator(this, static_cast<field_index_type>(i)),
 | 
| 750 |                             iterator(this, static_cast<field_index_type>(i + step))));
 | 
| 751 |                 }
 | 
| 752 | 
 | 
| 753 |                 // the last chunk runs to the end
 | 
| 754 |                 res.push_back(chunk(iterator(this, static_cast<field_index_type>(i)), end));
 | 
| 755 | 
 | 
| 756 |                 // done
 | 
| 757 |                 return res;
 | 
| 758 |             }
 | 
| 759 | 
 | 
| 760 |             // else: collect chunks of sub-set elements
 | 
| 761 | 
 | 
| 762 |             auto part = num / (this->numElements + 1);
 | 
| 763 |             assert(part > 0);
 | 
| 764 |             getChild(0)->collectChunks(res, part, begin, iterator(this, 0));
 | 
| 765 |             for (size_type i = 1; i < this->numElements; i++) {
 | 
| 766 |                 getChild(i)->collectChunks(res, part, iterator(this, static_cast<field_index_type>(i - 1)),
 | 
| 767 |                         iterator(this, static_cast<field_index_type>(i)));
 | 
| 768 |             }
 | 
| 769 |             getChild(this->numElements)
 | 
| 770 |                     ->collectChunks(res, num - (part * this->numElements),
 | 
| 771 |                             iterator(this, static_cast<field_index_type>(this->numElements) - 1), end);
 | 
| 772 | 
 | 
| 773 |             // done
 | 
| 774 |             return res;
 | 
| 775 |         }
 | 
| 776 | 
 | 
| 777 |         /**
 | 
| 778 |          * A function to verify the consistency of this node.
 | 
| 779 |          *
 | 
| 780 |          * @param root ... a reference to the root of the enclosing tree.
 | 
| 781 |          * @return true if valid, false otherwise
 | 
| 782 |          */
 | 
| 783 |         template <typename Comp>
 | 
| 784 |         bool check(Comp& comp, const node* root) const {
 | 
| 785 |             bool valid = true;
 | 
| 786 | 
 | 
| 787 |             // check fill-state
 | 
| 788 |             if (this->numElements > maxKeys) {
 | 
| 789 |                 std::cout << "Node with " << this->numElements << "/" << maxKeys << " encountered!\n";
 | 
| 790 |                 valid = false;
 | 
| 791 |             }
 | 
| 792 | 
 | 
| 793 |             // check root state
 | 
| 794 |             if (root == this) {
 | 
| 795 |                 if (this->parent != nullptr) {
 | 
| 796 |                     std::cout << "Root not properly linked!\n";
 | 
| 797 |                     valid = false;
 | 
| 798 |                 }
 | 
| 799 |             } else {
 | 
| 800 |                 // check parent relation
 | 
| 801 |                 if (!this->parent) {
 | 
| 802 |                     std::cout << "Invalid null-parent!\n";
 | 
| 803 |                     valid = false;
 | 
| 804 |                 } else {
 | 
| 805 |                     if (this->parent->getChildren()[this->position] != this) {
 | 
| 806 |                         std::cout << "Parent reference invalid!\n";
 | 
| 807 |                         std::cout << "   Node:     " << this << "\n";
 | 
| 808 |                         std::cout << "   Parent:   " << this->parent << "\n";
 | 
| 809 |                         std::cout << "   Position: " << ((int)this->position) << "\n";
 | 
| 810 |                         valid = false;
 | 
| 811 |                     }
 | 
| 812 | 
 | 
| 813 |                     // check parent key
 | 
| 814 |                     if (valid && this->position != 0 &&
 | 
| 815 |                             !(comp(this->parent->keys[this->position - 1], keys[0]) < ((isSet) ? 0 : 1))) {
 | 
| 816 |                         std::cout << "Left parent key not lower bound!\n";
 | 
| 817 |                         std::cout << "   Node:     " << this << "\n";
 | 
| 818 |                         std::cout << "   Parent:   " << this->parent << "\n";
 | 
| 819 |                         std::cout << "   Position: " << ((int)this->position) << "\n";
 | 
| 820 |                         std::cout << "   Key:   " << (this->parent->keys[this->position]) << "\n";
 | 
| 821 |                         std::cout << "   Lower: " << (keys[0]) << "\n";
 | 
| 822 |                         valid = false;
 | 
| 823 |                     }
 | 
| 824 | 
 | 
| 825 |                     // check parent key
 | 
| 826 |                     if (valid && this->position != this->parent->numElements &&
 | 
| 827 |                             !(comp(keys[this->numElements - 1], this->parent->keys[this->position]) <
 | 
| 828 |                                     ((isSet) ? 0 : 1))) {
 | 
| 829 |                         std::cout << "Right parent key not lower bound!\n";
 | 
| 830 |                         std::cout << "   Node:     " << this << "\n";
 | 
| 831 |                         std::cout << "   Parent:   " << this->parent << "\n";
 | 
| 832 |                         std::cout << "   Position: " << ((int)this->position) << "\n";
 | 
| 833 |                         std::cout << "   Key:   " << (this->parent->keys[this->position]) << "\n";
 | 
| 834 |                         std::cout << "   Upper: " << (keys[0]) << "\n";
 | 
| 835 |                         valid = false;
 | 
| 836 |                     }
 | 
| 837 |                 }
 | 
| 838 |             }
 | 
| 839 | 
 | 
| 840 |             // check element order
 | 
| 841 |             if (this->numElements > 0) {
 | 
| 842 |                 for (unsigned i = 0; i < this->numElements - 1; i++) {
 | 
| 843 |                     if (valid && !(comp(keys[i], keys[i + 1]) < ((isSet) ? 0 : 1))) {
 | 
| 844 |                         std::cout << "Element order invalid!\n";
 | 
| 845 |                         std::cout << " @" << this << " key " << i << " is " << keys[i] << " vs "
 | 
| 846 |                                   << keys[i + 1] << "\n";
 | 
| 847 |                         valid = false;
 | 
| 848 |                     }
 | 
| 849 |                 }
 | 
| 850 |             }
 | 
| 851 | 
 | 
| 852 |             // check state of sub-nodes
 | 
| 853 |             if (this->inner) {
 | 
| 854 |                 for (unsigned i = 0; i <= this->numElements; i++) {
 | 
| 855 |                     valid &= getChildren()[i]->check(comp, root);
 | 
| 856 |                 }
 | 
| 857 |             }
 | 
| 858 | 
 | 
| 859 |             return valid;
 | 
| 860 |         }
 | 
| 861 |     };  // namespace detail
 | 
| 862 | 
 | 
| 863 |     /**
 | 
| 864 |      * The data type representing inner nodes of the b-tree. It extends
 | 
| 865 |      * the generic implementation of a node by the storage locations
 | 
| 866 |      * of child pointers.
 | 
| 867 |      */
 | 
| 868 |     struct inner_node : public node {
 | 
| 869 |         // references to child nodes owned by this node
 | 
| 870 |         node* children[node::maxKeys + 1];
 | 
| 871 | 
 | 
| 872 |         // a simple default constructor initializing member fields
 | 
| 873 |         inner_node() : node(true) {}
 | 
| 874 | 
 | 
| 875 |         // clear up child nodes recursively
 | 
| 876 |         ~inner_node() {
 | 
| 877 |             for (unsigned i = 0; i <= this->numElements; ++i) {
 | 
| 878 |                 if (children[i] != nullptr) {
 | 
| 879 |                     if (children[i]->isLeaf()) {
 | 
| 880 |                         delete static_cast<leaf_node*>(children[i]);
 | 
| 881 |                     } else {
 | 
| 882 |                         delete static_cast<inner_node*>(children[i]);
 | 
| 883 |                     }
 | 
| 884 |                 }
 | 
| 885 |             }
 | 
| 886 |         }
 | 
| 887 |     };
 | 
| 888 | 
 | 
| 889 |     /**
 | 
| 890 |      * The data type representing leaf nodes of the b-tree. It does not
 | 
| 891 |      * add any capabilities to the generic node type.
 | 
| 892 |      */
 | 
| 893 |     struct leaf_node : public node {
 | 
| 894 |         // a simple default constructor initializing member fields
 | 
| 895 |         leaf_node() : node(false) {}
 | 
| 896 |     };
 | 
| 897 | 
 | 
| 898 |     // ------------------- iterators ------------------------
 | 
| 899 | 
 | 
| 900 | public:
 | 
| 901 |     /**
 | 
| 902 |      * The iterator type to be utilized for scanning through btree instances.
 | 
| 903 |      */
 | 
| 904 |     class iterator {
 | 
| 905 |         // a pointer to the node currently referred to
 | 
| 906 |         node const* cur;
 | 
| 907 | 
 | 
| 908 |         // the index of the element currently addressed within the referenced node
 | 
| 909 |         field_index_type pos = 0;
 | 
| 910 | 
 | 
| 911 |     public:
 | 
| 912 |         using iterator_category = std::forward_iterator_tag;
 | 
| 913 |         using value_type = Key;
 | 
| 914 |         using difference_type = ptrdiff_t;
 | 
| 915 |         using pointer = value_type*;
 | 
| 916 |         using reference = value_type&;
 | 
| 917 | 
 | 
| 918 |         // default constructor -- creating an end-iterator
 | 
| 919 |         iterator() : cur(nullptr) {}
 | 
| 920 | 
 | 
| 921 |         // creates an iterator referencing a specific element within a given node
 | 
| 922 |         iterator(node const* cur, field_index_type pos) : cur(cur), pos(pos) {}
 | 
| 923 | 
 | 
| 924 |         // a copy constructor
 | 
| 925 |         iterator(const iterator& other) : cur(other.cur), pos(other.pos) {}
 | 
| 926 | 
 | 
| 927 |         // an assignment operator
 | 
| 928 |         iterator& operator=(const iterator& other) {
 | 
| 929 |             cur = other.cur;
 | 
| 930 |             pos = other.pos;
 | 
| 931 |             return *this;
 | 
| 932 |         }
 | 
| 933 | 
 | 
| 934 |         // the equality operator as required by the iterator concept
 | 
| 935 |         bool operator==(const iterator& other) const {
 | 
| 936 |             return cur == other.cur && pos == other.pos;
 | 
| 937 |         }
 | 
| 938 | 
 | 
| 939 |         // the not-equality operator as required by the iterator concept
 | 
| 940 |         bool operator!=(const iterator& other) const {
 | 
| 941 |             return !(*this == other);
 | 
| 942 |         }
 | 
| 943 | 
 | 
| 944 |         // the deref operator as required by the iterator concept
 | 
| 945 |         const Key& operator*() const {
 | 
| 946 |             return cur->keys[pos];
 | 
| 947 |         }
 | 
| 948 | 
 | 
| 949 |         // the increment operator as required by the iterator concept
 | 
| 950 |         iterator& operator++() {
 | 
| 951 |             // the quick mode -- if in a leaf and there are elements left
 | 
| 952 |             if (cur->isLeaf() && ++pos < cur->getNumElements()) {
 | 
| 953 |                 return *this;
 | 
| 954 |             }
 | 
| 955 | 
 | 
| 956 |             // otherwise it is a bit more tricky
 | 
| 957 | 
 | 
| 958 |             // A) currently in an inner node => go to the left-most child
 | 
| 959 |             if (cur->isInner()) {
 | 
| 960 |                 cur = cur->getChildren()[pos + 1];
 | 
| 961 |                 while (!cur->isLeaf()) {
 | 
| 962 |                     cur = cur->getChildren()[0];
 | 
| 963 |                 }
 | 
| 964 |                 pos = 0;
 | 
| 965 | 
 | 
| 966 |                 // nodes may be empty due to biased insertion
 | 
| 967 |                 if (!cur->isEmpty()) {
 | 
| 968 |                     return *this;
 | 
| 969 |                 }
 | 
| 970 |             }
 | 
| 971 | 
 | 
| 972 |             // B) we are at the right-most element of a leaf => go to next inner node
 | 
| 973 |             assert(cur->isLeaf());
 | 
| 974 |             assert(pos == cur->getNumElements());
 | 
| 975 | 
 | 
| 976 |             while (cur != nullptr && pos == cur->getNumElements()) {
 | 
| 977 |                 pos = cur->getPositionInParent();
 | 
| 978 |                 cur = cur->getParent();
 | 
| 979 |             }
 | 
| 980 |             return *this;
 | 
| 981 |         }
 | 
| 982 | 
 | 
| 983 |         // prints a textual representation of this iterator to the given stream (mainly for debugging)
 | 
| 984 |         void print(std::ostream& out = std::cout) const {
 | 
| 985 |             out << cur << "[" << (int)pos << "]";
 | 
| 986 |         }
 | 
| 987 |     };
 | 
| 988 | 
 | 
| 989 |     /**
 | 
| 990 |      * A collection of operation hints speeding up some of the involved operations
 | 
| 991 |      * by exploiting temporal locality.
 | 
| 992 |      */
 | 
| 993 |     template <unsigned size = 1>
 | 
| 994 |     struct btree_operation_hints {
 | 
| 995 |         using node_cache = LRUCache<node*, size>;
 | 
| 996 | 
 | 
| 997 |         // the node where the last insertion terminated
 | 
| 998 |         node_cache last_insert;
 | 
| 999 | 
 | 
| 1000 |         // the node where the last find-operation terminated
 | 
| 1001 |         node_cache last_find_end;
 | 
| 1002 | 
 | 
| 1003 |         // the node where the last lower-bound operation terminated
 | 
| 1004 |         node_cache last_lower_bound_end;
 | 
| 1005 | 
 | 
| 1006 |         // the node where the last upper-bound operation terminated
 | 
| 1007 |         node_cache last_upper_bound_end;
 | 
| 1008 | 
 | 
| 1009 |         // default constructor
 | 
| 1010 |         btree_operation_hints() = default;
 | 
| 1011 | 
 | 
| 1012 |         // resets all hints (to be triggered e.g. when deleting nodes)
 | 
| 1013 |         void clear() {
 | 
| 1014 |             last_insert.clear(nullptr);
 | 
| 1015 |             last_find_end.clear(nullptr);
 | 
| 1016 |             last_lower_bound_end.clear(nullptr);
 | 
| 1017 |             last_upper_bound_end.clear(nullptr);
 | 
| 1018 |         }
 | 
| 1019 |     };
 | 
| 1020 | 
 | 
| 1021 |     using operation_hints = btree_operation_hints<1>;
 | 
| 1022 | 
 | 
| 1023 | protected:
 | 
| 1024 | #ifdef IS_PARALLEL
 | 
| 1025 |     // a pointer to the root node of this tree
 | 
| 1026 |     node* volatile root;
 | 
| 1027 | 
 | 
| 1028 |     // a lock to synchronize update operations on the root pointer
 | 
| 1029 |     lock_type root_lock;
 | 
| 1030 | #else
 | 
| 1031 |     // a pointer to the root node of this tree
 | 
| 1032 |     node* root;
 | 
| 1033 | 
 | 
| 1034 |     // required to not duplicate too much code
 | 
| 1035 |     lock_type root_lock;
 | 
| 1036 | #endif
 | 
| 1037 | 
 | 
| 1038 |     // a pointer to the left-most node of this tree (initial note for iteration)
 | 
| 1039 |     leaf_node* leftmost;
 | 
| 1040 | 
 | 
| 1041 |     /* -------------- operator hint statistics ----------------- */
 | 
| 1042 | 
 | 
| 1043 |     // an aggregation of statistical values of the hint utilization
 | 
| 1044 |     struct hint_statistics {
 | 
| 1045 |         // the counter for insertion operations
 | 
| 1046 |         CacheAccessCounter inserts;
 | 
| 1047 | 
 | 
| 1048 |         // the counter for contains operations
 | 
| 1049 |         CacheAccessCounter contains;
 | 
| 1050 | 
 | 
| 1051 |         // the counter for lower_bound operations
 | 
| 1052 |         CacheAccessCounter lower_bound;
 | 
| 1053 | 
 | 
| 1054 |         // the counter for upper_bound operations
 | 
| 1055 |         CacheAccessCounter upper_bound;
 | 
| 1056 |     };
 | 
| 1057 | 
 | 
| 1058 |     // the hint statistic of this b-tree instance
 | 
| 1059 |     mutable hint_statistics hint_stats;
 | 
| 1060 | 
 | 
| 1061 | public:
 | 
| 1062 |     // the maximum number of keys stored per node
 | 
| 1063 |     static constexpr std::size_t max_keys_per_node = node::maxKeys;
 | 
| 1064 | 
 | 
| 1065 |     // -- ctors / dtors --
 | 
| 1066 | 
 | 
| 1067 |     // the default constructor creating an empty tree
 | 
| 1068 |     btree(Comparator comp = Comparator(), WeakComparator weak_comp = WeakComparator())
 | 
| 1069 |             : comp(std::move(comp)), weak_comp(std::move(weak_comp)), root(nullptr), leftmost(nullptr) {}
 | 
| 1070 | 
 | 
| 1071 |     // a constructor creating a tree from the given iterator range
 | 
| 1072 |     template <typename Iter>
 | 
| 1073 |     btree(const Iter& a, const Iter& b) : root(nullptr), leftmost(nullptr) {
 | 
| 1074 |         insert(a, b);
 | 
| 1075 |     }
 | 
| 1076 | 
 | 
| 1077 |     // a move constructor
 | 
| 1078 |     btree(btree&& other)
 | 
| 1079 |             : comp(other.comp), weak_comp(other.weak_comp), root(other.root), leftmost(other.leftmost) {
 | 
| 1080 |         other.root = nullptr;
 | 
| 1081 |         other.leftmost = nullptr;
 | 
| 1082 |     }
 | 
| 1083 | 
 | 
| 1084 |     // a copy constructor
 | 
| 1085 |     btree(const btree& set) : comp(set.comp), weak_comp(set.weak_comp), root(nullptr), leftmost(nullptr) {
 | 
| 1086 |         // use assignment operator for a deep copy
 | 
| 1087 |         *this = set;
 | 
| 1088 |     }
 | 
| 1089 | 
 | 
| 1090 | protected:
 | 
| 1091 |     /**
 | 
| 1092 |      * An internal constructor enabling the specific creation of a tree
 | 
| 1093 |      * based on internal parameters.
 | 
| 1094 |      */
 | 
| 1095 |     btree(size_type /* size */, node* root, leaf_node* leftmost) : root(root), leftmost(leftmost) {}
 | 
| 1096 | 
 | 
| 1097 | public:
 | 
| 1098 |     // the destructor freeing all contained nodes
 | 
| 1099 |     ~btree() {
 | 
| 1100 |         clear();
 | 
| 1101 |     }
 | 
| 1102 | 
 | 
| 1103 |     // -- mutators and observers --
 | 
| 1104 | 
 | 
| 1105 |     // emptiness check
 | 
| 1106 |     bool empty() const {
 | 
| 1107 |         return root == nullptr;
 | 
| 1108 |     }
 | 
| 1109 | 
 | 
| 1110 |     // determines the number of elements in this tree
 | 
| 1111 |     size_type size() const {
 | 
| 1112 |         return (root) ? root->countEntries() : 0;
 | 
| 1113 |     }
 | 
| 1114 | 
 | 
| 1115 |     /**
 | 
| 1116 |      * Inserts the given key into this tree.
 | 
| 1117 |      */
 | 
| 1118 |     bool insert(const Key& k) {
 | 
| 1119 |         operation_hints hints;
 | 
| 1120 |         return insert(k, hints);
 | 
| 1121 |     }
 | 
| 1122 | 
 | 
| 1123 |     /**
 | 
| 1124 |      * Inserts the given key into this tree.
 | 
| 1125 |      */
 | 
| 1126 |     bool insert(const Key& k, operation_hints& hints) {
 | 
| 1127 | #ifdef IS_PARALLEL
 | 
| 1128 | 
 | 
| 1129 |         // special handling for inserting first element
 | 
| 1130 |         while (root == nullptr) {
 | 
| 1131 |             // try obtaining root-lock
 | 
| 1132 |             if (!root_lock.try_start_write()) {
 | 
| 1133 |                 // somebody else was faster => re-check
 | 
| 1134 |                 continue;
 | 
| 1135 |             }
 | 
| 1136 | 
 | 
| 1137 |             // check loop condition again
 | 
| 1138 |             if (root != nullptr) {
 | 
| 1139 |                 // somebody else was faster => normal insert
 | 
| 1140 |                 root_lock.end_write();
 | 
| 1141 |                 break;
 | 
| 1142 |             }
 | 
| 1143 | 
 | 
| 1144 |             // create new node
 | 
| 1145 |             leftmost = new leaf_node();
 | 
| 1146 |             leftmost->numElements = 1;
 | 
| 1147 |             leftmost->keys[0] = k;
 | 
| 1148 |             root = leftmost;
 | 
| 1149 | 
 | 
| 1150 |             // operation complete => we can release the root lock
 | 
| 1151 |             root_lock.end_write();
 | 
| 1152 | 
 | 
| 1153 |             hints.last_insert.access(leftmost);
 | 
| 1154 | 
 | 
| 1155 |             return true;
 | 
| 1156 |         }
 | 
| 1157 | 
 | 
| 1158 |         // insert using iterative implementation
 | 
| 1159 | 
 | 
| 1160 |         node* cur = nullptr;
 | 
| 1161 | 
 | 
| 1162 |         // test last insert hints
 | 
| 1163 |         lock_type::Lease cur_lease;
 | 
| 1164 | 
 | 
| 1165 |         auto checkHint = [&](node* last_insert) {
 | 
| 1166 |             // ignore null pointer
 | 
| 1167 |             if (!last_insert) return false;
 | 
| 1168 |             // get a read lease on indicated node
 | 
| 1169 |             auto hint_lease = last_insert->lock.start_read();
 | 
| 1170 |             // check whether it covers the key
 | 
| 1171 |             if (!weak_covers(last_insert, k)) return false;
 | 
| 1172 |             // and if there was no concurrent modification
 | 
| 1173 |             if (!last_insert->lock.validate(hint_lease)) return false;
 | 
| 1174 |             // use hinted location
 | 
| 1175 |             cur = last_insert;
 | 
| 1176 |             // and keep lease
 | 
| 1177 |             cur_lease = hint_lease;
 | 
| 1178 |             // we found a hit
 | 
| 1179 |             return true;
 | 
| 1180 |         };
 | 
| 1181 | 
 | 
| 1182 |         if (hints.last_insert.any(checkHint)) {
 | 
| 1183 |             // register this as a hit
 | 
| 1184 |             hint_stats.inserts.addHit();
 | 
| 1185 |         } else {
 | 
| 1186 |             // register this as a miss
 | 
| 1187 |             hint_stats.inserts.addMiss();
 | 
| 1188 |         }
 | 
| 1189 | 
 | 
| 1190 |         // if there is no valid hint ..
 | 
| 1191 |         if (!cur) {
 | 
| 1192 |             do {
 | 
| 1193 |                 // get root - access lock
 | 
| 1194 |                 auto root_lease = root_lock.start_read();
 | 
| 1195 | 
 | 
| 1196 |                 // start with root
 | 
| 1197 |                 cur = root;
 | 
| 1198 | 
 | 
| 1199 |                 // get lease of the next node to be accessed
 | 
| 1200 |                 cur_lease = cur->lock.start_read();
 | 
| 1201 | 
 | 
| 1202 |                 // check validity of root pointer
 | 
| 1203 |                 if (root_lock.end_read(root_lease)) {
 | 
| 1204 |                     break;
 | 
| 1205 |                 }
 | 
| 1206 | 
 | 
| 1207 |             } while (true);
 | 
| 1208 |         }
 | 
| 1209 | 
 | 
| 1210 |         while (true) {
 | 
| 1211 |             // handle inner nodes
 | 
| 1212 |             if (cur->inner) {
 | 
| 1213 |                 auto a = &(cur->keys[0]);
 | 
| 1214 |                 auto b = &(cur->keys[cur->numElements]);
 | 
| 1215 | 
 | 
| 1216 |                 auto pos = search.lower_bound(k, a, b, weak_comp);
 | 
| 1217 |                 auto idx = pos - a;
 | 
| 1218 | 
 | 
| 1219 |                 // early exit for sets
 | 
| 1220 |                 if (isSet && pos != b && weak_equal(*pos, k)) {
 | 
| 1221 |                     // validate results
 | 
| 1222 |                     if (!cur->lock.validate(cur_lease)) {
 | 
| 1223 |                         // start over again
 | 
| 1224 |                         return insert(k, hints);
 | 
| 1225 |                     }
 | 
| 1226 | 
 | 
| 1227 |                     // update provenance information
 | 
| 1228 |                     if (typeid(Comparator) != typeid(WeakComparator)) {
 | 
| 1229 |                         if (!cur->lock.try_upgrade_to_write(cur_lease)) {
 | 
| 1230 |                             // start again
 | 
| 1231 |                             return insert(k, hints);
 | 
| 1232 |                         }
 | 
| 1233 |                         bool updated = update(*pos, k);
 | 
| 1234 |                         cur->lock.end_write();
 | 
| 1235 |                         return updated;
 | 
| 1236 |                     }
 | 
| 1237 | 
 | 
| 1238 |                     // we found the element => no check of lock necessary
 | 
| 1239 |                     return false;
 | 
| 1240 |                 }
 | 
| 1241 | 
 | 
| 1242 |                 // get next pointer
 | 
| 1243 |                 auto next = cur->getChild(idx);
 | 
| 1244 | 
 | 
| 1245 |                 // get lease on next level
 | 
| 1246 |                 auto next_lease = next->lock.start_read();
 | 
| 1247 | 
 | 
| 1248 |                 // check whether there was a write
 | 
| 1249 |                 if (!cur->lock.end_read(cur_lease)) {
 | 
| 1250 |                     // start over
 | 
| 1251 |                     return insert(k, hints);
 | 
| 1252 |                 }
 | 
| 1253 | 
 | 
| 1254 |                 // go to next
 | 
| 1255 |                 cur = next;
 | 
| 1256 | 
 | 
| 1257 |                 // move on lease
 | 
| 1258 |                 cur_lease = next_lease;
 | 
| 1259 | 
 | 
| 1260 |                 continue;
 | 
| 1261 |             }
 | 
| 1262 | 
 | 
| 1263 |             // the rest is for leaf nodes
 | 
| 1264 |             assert(!cur->inner);
 | 
| 1265 | 
 | 
| 1266 |             // -- insert node in leaf node --
 | 
| 1267 | 
 | 
| 1268 |             auto a = &(cur->keys[0]);
 | 
| 1269 |             auto b = &(cur->keys[cur->numElements]);
 | 
| 1270 | 
 | 
| 1271 |             auto pos = search.upper_bound(k, a, b, weak_comp);
 | 
| 1272 |             auto idx = pos - a;
 | 
| 1273 | 
 | 
| 1274 |             // early exit for sets
 | 
| 1275 |             if (isSet && pos != a && weak_equal(*(pos - 1), k)) {
 | 
| 1276 |                 // validate result
 | 
| 1277 |                 if (!cur->lock.validate(cur_lease)) {
 | 
| 1278 |                     // start over again
 | 
| 1279 |                     return insert(k, hints);
 | 
| 1280 |                 }
 | 
| 1281 | 
 | 
| 1282 |                 // update provenance information
 | 
| 1283 |                 if (typeid(Comparator) != typeid(WeakComparator)) {
 | 
| 1284 |                     if (!cur->lock.try_upgrade_to_write(cur_lease)) {
 | 
| 1285 |                         // start again
 | 
| 1286 |                         return insert(k, hints);
 | 
| 1287 |                     }
 | 
| 1288 |                     bool updated = update(*(pos - 1), k);
 | 
| 1289 |                     cur->lock.end_write();
 | 
| 1290 |                     return updated;
 | 
| 1291 |                 }
 | 
| 1292 | 
 | 
| 1293 |                 // we found the element => done
 | 
| 1294 |                 return false;
 | 
| 1295 |             }
 | 
| 1296 | 
 | 
| 1297 |             // upgrade to write-permission
 | 
| 1298 |             if (!cur->lock.try_upgrade_to_write(cur_lease)) {
 | 
| 1299 |                 // something has changed => restart
 | 
| 1300 |                 hints.last_insert.access(cur);
 | 
| 1301 |                 return insert(k, hints);
 | 
| 1302 |             }
 | 
| 1303 | 
 | 
| 1304 |             if (cur->numElements >= node::maxKeys) {
 | 
| 1305 |                 // -- lock parents --
 | 
| 1306 |                 auto priv = cur;
 | 
| 1307 |                 auto parent = priv->parent;
 | 
| 1308 |                 std::vector<node*> parents;
 | 
| 1309 |                 do {
 | 
| 1310 |                     if (parent) {
 | 
| 1311 |                         parent->lock.start_write();
 | 
| 1312 |                         while (true) {
 | 
| 1313 |                             // check whether parent is correct
 | 
| 1314 |                             if (parent == priv->parent) {
 | 
| 1315 |                                 break;
 | 
| 1316 |                             }
 | 
| 1317 |                             // switch parent
 | 
| 1318 |                             parent->lock.abort_write();
 | 
| 1319 |                             parent = priv->parent;
 | 
| 1320 |                             parent->lock.start_write();
 | 
| 1321 |                         }
 | 
| 1322 |                     } else {
 | 
| 1323 |                         // lock root lock => since cur is root
 | 
| 1324 |                         root_lock.start_write();
 | 
| 1325 |                     }
 | 
| 1326 | 
 | 
| 1327 |                     // record locked node
 | 
| 1328 |                     parents.push_back(parent);
 | 
| 1329 | 
 | 
| 1330 |                     // stop at "sphere of influence"
 | 
| 1331 |                     if (!parent || !parent->isFull()) {
 | 
| 1332 |                         break;
 | 
| 1333 |                     }
 | 
| 1334 | 
 | 
| 1335 |                     // go one step higher
 | 
| 1336 |                     priv = parent;
 | 
| 1337 |                     parent = parent->parent;
 | 
| 1338 | 
 | 
| 1339 |                 } while (true);
 | 
| 1340 | 
 | 
| 1341 |                 // split this node
 | 
| 1342 |                 auto old_root = root;
 | 
| 1343 |                 idx -= cur->rebalance_or_split(
 | 
| 1344 |                         const_cast<node**>(&root), root_lock, static_cast<int>(idx), parents);
 | 
| 1345 | 
 | 
| 1346 |                 // release parent lock
 | 
| 1347 |                 for (auto it = parents.rbegin(); it != parents.rend(); ++it) {
 | 
| 1348 |                     auto parent = *it;
 | 
| 1349 | 
 | 
| 1350 |                     // release this lock
 | 
| 1351 |                     if (parent) {
 | 
| 1352 |                         parent->lock.end_write();
 | 
| 1353 |                     } else {
 | 
| 1354 |                         if (old_root != root) {
 | 
| 1355 |                             root_lock.end_write();
 | 
| 1356 |                         } else {
 | 
| 1357 |                             root_lock.abort_write();
 | 
| 1358 |                         }
 | 
| 1359 |                     }
 | 
| 1360 |                 }
 | 
| 1361 | 
 | 
| 1362 |                 // insert element in right fragment
 | 
| 1363 |                 if (((size_type)idx) > cur->numElements) {
 | 
| 1364 |                     // release current lock
 | 
| 1365 |                     cur->lock.end_write();
 | 
| 1366 | 
 | 
| 1367 |                     // insert in sibling
 | 
| 1368 |                     return insert(k, hints);
 | 
| 1369 |                 }
 | 
| 1370 |             }
 | 
| 1371 | 
 | 
| 1372 |             // ok - no split necessary
 | 
| 1373 |             assert(cur->numElements < node::maxKeys && "Split required!");
 | 
| 1374 | 
 | 
| 1375 |             // move keys
 | 
| 1376 |             for (int j = static_cast<int>(cur->numElements); j > static_cast<int>(idx); --j) {
 | 
| 1377 |                 cur->keys[j] = cur->keys[j - 1];
 | 
| 1378 |             }
 | 
| 1379 | 
 | 
| 1380 |             // insert new element
 | 
| 1381 |             cur->keys[idx] = k;
 | 
| 1382 |             cur->numElements++;
 | 
| 1383 | 
 | 
| 1384 |             // release lock on current node
 | 
| 1385 |             cur->lock.end_write();
 | 
| 1386 | 
 | 
| 1387 |             // remember last insertion position
 | 
| 1388 |             hints.last_insert.access(cur);
 | 
| 1389 |             return true;
 | 
| 1390 |         }
 | 
| 1391 | 
 | 
| 1392 | #else
 | 
| 1393 |         // special handling for inserting first element
 | 
| 1394 |         if (empty()) {
 | 
| 1395 |             // create new node
 | 
| 1396 |             leftmost = new leaf_node();
 | 
| 1397 |             leftmost->numElements = 1;
 | 
| 1398 |             leftmost->keys[0] = k;
 | 
| 1399 |             root = leftmost;
 | 
| 1400 | 
 | 
| 1401 |             hints.last_insert.access(leftmost);
 | 
| 1402 | 
 | 
| 1403 |             return true;
 | 
| 1404 |         }
 | 
| 1405 | 
 | 
| 1406 |         // insert using iterative implementation
 | 
| 1407 |         node* cur = root;
 | 
| 1408 | 
 | 
| 1409 |         auto checkHints = [&](node* last_insert) {
 | 
| 1410 |             if (!last_insert) return false;
 | 
| 1411 |             if (!weak_covers(last_insert, k)) return false;
 | 
| 1412 |             cur = last_insert;
 | 
| 1413 |             return true;
 | 
| 1414 |         };
 | 
| 1415 | 
 | 
| 1416 |         // test last insert
 | 
| 1417 |         if (hints.last_insert.any(checkHints)) {
 | 
| 1418 |             hint_stats.inserts.addHit();
 | 
| 1419 |         } else {
 | 
| 1420 |             hint_stats.inserts.addMiss();
 | 
| 1421 |         }
 | 
| 1422 | 
 | 
| 1423 |         while (true) {
 | 
| 1424 |             // handle inner nodes
 | 
| 1425 |             if (cur->inner) {
 | 
| 1426 |                 auto a = &(cur->keys[0]);
 | 
| 1427 |                 auto b = &(cur->keys[cur->numElements]);
 | 
| 1428 | 
 | 
| 1429 |                 auto pos = search.lower_bound(k, a, b, weak_comp);
 | 
| 1430 |                 auto idx = pos - a;
 | 
| 1431 | 
 | 
| 1432 |                 // early exit for sets
 | 
| 1433 |                 if (isSet && pos != b && weak_equal(*pos, k)) {
 | 
| 1434 |                     // update provenance information
 | 
| 1435 |                     if (typeid(Comparator) != typeid(WeakComparator)) {
 | 
| 1436 |                         return update(*pos, k);
 | 
| 1437 |                     }
 | 
| 1438 | 
 | 
| 1439 |                     return false;
 | 
| 1440 |                 }
 | 
| 1441 | 
 | 
| 1442 |                 cur = cur->getChild(idx);
 | 
| 1443 |                 continue;
 | 
| 1444 |             }
 | 
| 1445 | 
 | 
| 1446 |             // the rest is for leaf nodes
 | 
| 1447 |             assert(!cur->inner);
 | 
| 1448 | 
 | 
| 1449 |             // -- insert node in leaf node --
 | 
| 1450 | 
 | 
| 1451 |             auto a = &(cur->keys[0]);
 | 
| 1452 |             auto b = &(cur->keys[cur->numElements]);
 | 
| 1453 | 
 | 
| 1454 |             auto pos = search.upper_bound(k, a, b, weak_comp);
 | 
| 1455 |             auto idx = pos - a;
 | 
| 1456 | 
 | 
| 1457 |             // early exit for sets
 | 
| 1458 |             if (isSet && pos != a && weak_equal(*(pos - 1), k)) {
 | 
| 1459 |                 // update provenance information
 | 
| 1460 |                 if (typeid(Comparator) != typeid(WeakComparator)) {
 | 
| 1461 |                     return update(*(pos - 1), k);
 | 
| 1462 |                 }
 | 
| 1463 | 
 | 
| 1464 |                 return false;
 | 
| 1465 |             }
 | 
| 1466 | 
 | 
| 1467 |             if (cur->numElements >= node::maxKeys) {
 | 
| 1468 |                 // split this node
 | 
| 1469 |                 idx -= cur->rebalance_or_split(&root, root_lock, static_cast<int>(idx));
 | 
| 1470 | 
 | 
| 1471 |                 // insert element in right fragment
 | 
| 1472 |                 if (((size_type)idx) > cur->numElements) {
 | 
| 1473 |                     idx -= cur->numElements + 1;
 | 
| 1474 |                     cur = cur->parent->getChild(cur->position + 1);
 | 
| 1475 |                 }
 | 
| 1476 |             }
 | 
| 1477 | 
 | 
| 1478 |             // ok - no split necessary
 | 
| 1479 |             assert(cur->numElements < node::maxKeys && "Split required!");
 | 
| 1480 | 
 | 
| 1481 |             // move keys
 | 
| 1482 |             for (int j = static_cast<int>(cur->numElements); j > idx; --j) {
 | 
| 1483 |                 cur->keys[j] = cur->keys[j - 1];
 | 
| 1484 |             }
 | 
| 1485 | 
 | 
| 1486 |             // insert new element
 | 
| 1487 |             cur->keys[idx] = k;
 | 
| 1488 |             cur->numElements++;
 | 
| 1489 | 
 | 
| 1490 |             // remember last insertion position
 | 
| 1491 |             hints.last_insert.access(cur);
 | 
| 1492 | 
 | 
| 1493 |             return true;
 | 
| 1494 |         }
 | 
| 1495 | #endif
 | 
| 1496 |     }
 | 
| 1497 | 
 | 
| 1498 |     /**
 | 
| 1499 |      * Inserts the given range of elements into this tree.
 | 
| 1500 |      */
 | 
| 1501 |     template <typename Iter>
 | 
| 1502 |     void insert(const Iter& a, const Iter& b) {
 | 
| 1503 |         // TODO: improve this beyond a naive insert
 | 
| 1504 |         operation_hints hints;
 | 
| 1505 |         // a naive insert so far .. seems to work fine
 | 
| 1506 |         for (auto it = a; it != b; ++it) {
 | 
| 1507 |             // use insert with hint
 | 
| 1508 |             insert(*it, hints);
 | 
| 1509 |         }
 | 
| 1510 |     }
 | 
| 1511 | 
 | 
| 1512 |     // Obtains an iterator referencing the first element of the tree.
 | 
| 1513 |     iterator begin() const {
 | 
| 1514 |         return iterator(leftmost, 0);
 | 
| 1515 |     }
 | 
| 1516 | 
 | 
| 1517 |     // Obtains an iterator referencing the position after the last element of the tree.
 | 
| 1518 |     iterator end() const {
 | 
| 1519 |         return iterator();
 | 
| 1520 |     }
 | 
| 1521 | 
 | 
| 1522 |     /**
 | 
| 1523 |      * Partitions the full range of this set into up to a given number of chunks.
 | 
| 1524 |      * The chunks will cover approximately the same number of elements. Also, the
 | 
| 1525 |      * number of chunks will only approximate the desired number of chunks.
 | 
| 1526 |      *
 | 
| 1527 |      * @param num .. the number of chunks requested
 | 
| 1528 |      * @return a list of chunks partitioning this tree
 | 
| 1529 |      */
 | 
| 1530 |     std::vector<chunk> partition(size_type num) const {
 | 
| 1531 |         return getChunks(num);
 | 
| 1532 |     }
 | 
| 1533 | 
 | 
| 1534 |     std::vector<chunk> getChunks(size_type num) const {
 | 
| 1535 |         std::vector<chunk> res;
 | 
| 1536 |         if (empty()) {
 | 
| 1537 |             return res;
 | 
| 1538 |         }
 | 
| 1539 |         return root->collectChunks(res, num, begin(), end());
 | 
| 1540 |     }
 | 
| 1541 | 
 | 
| 1542 |     /**
 | 
| 1543 |      * Determines whether the given element is a member of this tree.
 | 
| 1544 |      */
 | 
| 1545 |     bool contains(const Key& k) const {
 | 
| 1546 |         operation_hints hints;
 | 
| 1547 |         return contains(k, hints);
 | 
| 1548 |     }
 | 
| 1549 | 
 | 
| 1550 |     /**
 | 
| 1551 |      * Determines whether the given element is a member of this tree.
 | 
| 1552 |      */
 | 
| 1553 |     bool contains(const Key& k, operation_hints& hints) const {
 | 
| 1554 |         return find(k, hints) != end();
 | 
| 1555 |     }
 | 
| 1556 | 
 | 
| 1557 |     /**
 | 
| 1558 |      * Locates the given key within this tree and returns an iterator
 | 
| 1559 |      * referencing its position. If not found, an end-iterator will be returned.
 | 
| 1560 |      */
 | 
| 1561 |     iterator find(const Key& k) const {
 | 
| 1562 |         operation_hints hints;
 | 
| 1563 |         return find(k, hints);
 | 
| 1564 |     }
 | 
| 1565 | 
 | 
| 1566 |     /**
 | 
| 1567 |      * Locates the given key within this tree and returns an iterator
 | 
| 1568 |      * referencing its position. If not found, an end-iterator will be returned.
 | 
| 1569 |      */
 | 
| 1570 |     iterator find(const Key& k, operation_hints& hints) const {
 | 
| 1571 |         if (empty()) {
 | 
| 1572 |             return end();
 | 
| 1573 |         }
 | 
| 1574 | 
 | 
| 1575 |         node* cur = root;
 | 
| 1576 | 
 | 
| 1577 |         auto checkHints = [&](node* last_find_end) {
 | 
| 1578 |             if (!last_find_end) return false;
 | 
| 1579 |             if (!covers(last_find_end, k)) return false;
 | 
| 1580 |             cur = last_find_end;
 | 
| 1581 |             return true;
 | 
| 1582 |         };
 | 
| 1583 | 
 | 
| 1584 |         // test last location searched (temporal locality)
 | 
| 1585 |         if (hints.last_find_end.any(checkHints)) {
 | 
| 1586 |             // register it as a hit
 | 
| 1587 |             hint_stats.contains.addHit();
 | 
| 1588 |         } else {
 | 
| 1589 |             // register it as a miss
 | 
| 1590 |             hint_stats.contains.addMiss();
 | 
| 1591 |         }
 | 
| 1592 | 
 | 
| 1593 |         // an iterative implementation (since 2/7 faster than recursive)
 | 
| 1594 | 
 | 
| 1595 |         while (true) {
 | 
| 1596 |             auto a = &(cur->keys[0]);
 | 
| 1597 |             auto b = &(cur->keys[cur->numElements]);
 | 
| 1598 | 
 | 
| 1599 |             auto pos = search(k, a, b, comp);
 | 
| 1600 | 
 | 
| 1601 |             if (pos < b && equal(*pos, k)) {
 | 
| 1602 |                 hints.last_find_end.access(cur);
 | 
| 1603 |                 return iterator(cur, static_cast<field_index_type>(pos - a));
 | 
| 1604 |             }
 | 
| 1605 | 
 | 
| 1606 |             if (!cur->inner) {
 | 
| 1607 |                 hints.last_find_end.access(cur);
 | 
| 1608 |                 return end();
 | 
| 1609 |             }
 | 
| 1610 | 
 | 
| 1611 |             // continue search in child node
 | 
| 1612 |             cur = cur->getChild(pos - a);
 | 
| 1613 |         }
 | 
| 1614 |     }
 | 
| 1615 | 
 | 
| 1616 |     /**
 | 
| 1617 |      * Obtains a lower boundary for the given key -- hence an iterator referencing
 | 
| 1618 |      * the smallest value that is not less the given key. If there is no such element,
 | 
| 1619 |      * an end-iterator will be returned.
 | 
| 1620 |      */
 | 
| 1621 |     iterator lower_bound(const Key& k) const {
 | 
| 1622 |         operation_hints hints;
 | 
| 1623 |         return lower_bound(k, hints);
 | 
| 1624 |     }
 | 
| 1625 | 
 | 
| 1626 |     /**
 | 
| 1627 |      * Obtains a lower boundary for the given key -- hence an iterator referencing
 | 
| 1628 |      * the smallest value that is not less the given key. If there is no such element,
 | 
| 1629 |      * an end-iterator will be returned.
 | 
| 1630 |      */
 | 
| 1631 |     iterator lower_bound(const Key& k, operation_hints& hints) const {
 | 
| 1632 |         if (empty()) {
 | 
| 1633 |             return end();
 | 
| 1634 |         }
 | 
| 1635 | 
 | 
| 1636 |         node* cur = root;
 | 
| 1637 | 
 | 
| 1638 |         auto checkHints = [&](node* last_lower_bound_end) {
 | 
| 1639 |             if (!last_lower_bound_end) return false;
 | 
| 1640 |             if (!covers(last_lower_bound_end, k)) return false;
 | 
| 1641 |             cur = last_lower_bound_end;
 | 
| 1642 |             return true;
 | 
| 1643 |         };
 | 
| 1644 | 
 | 
| 1645 |         // test last searched node
 | 
| 1646 |         if (hints.last_lower_bound_end.any(checkHints)) {
 | 
| 1647 |             hint_stats.lower_bound.addHit();
 | 
| 1648 |         } else {
 | 
| 1649 |             hint_stats.lower_bound.addMiss();
 | 
| 1650 |         }
 | 
| 1651 | 
 | 
| 1652 |         iterator res = end();
 | 
| 1653 |         while (true) {
 | 
| 1654 |             auto a = &(cur->keys[0]);
 | 
| 1655 |             auto b = &(cur->keys[cur->numElements]);
 | 
| 1656 | 
 | 
| 1657 |             auto pos = search.lower_bound(k, a, b, comp);
 | 
| 1658 |             auto idx = static_cast<field_index_type>(pos - a);
 | 
| 1659 | 
 | 
| 1660 |             if (!cur->inner) {
 | 
| 1661 |                 hints.last_lower_bound_end.access(cur);
 | 
| 1662 |                 return (pos != b) ? iterator(cur, idx) : res;
 | 
| 1663 |             }
 | 
| 1664 | 
 | 
| 1665 |             if (isSet && pos != b && equal(*pos, k)) {
 | 
| 1666 |                 return iterator(cur, idx);
 | 
| 1667 |             }
 | 
| 1668 | 
 | 
| 1669 |             if (pos != b) {
 | 
| 1670 |                 res = iterator(cur, idx);
 | 
| 1671 |             }
 | 
| 1672 | 
 | 
| 1673 |             cur = cur->getChild(idx);
 | 
| 1674 |         }
 | 
| 1675 |     }
 | 
| 1676 | 
 | 
| 1677 |     /**
 | 
| 1678 |      * Obtains an upper boundary for the given key -- hence an iterator referencing
 | 
| 1679 |      * the first element that the given key is less than the referenced value. If
 | 
| 1680 |      * there is no such element, an end-iterator will be returned.
 | 
| 1681 |      */
 | 
| 1682 |     iterator upper_bound(const Key& k) const {
 | 
| 1683 |         operation_hints hints;
 | 
| 1684 |         return upper_bound(k, hints);
 | 
| 1685 |     }
 | 
| 1686 | 
 | 
| 1687 |     /**
 | 
| 1688 |      * Obtains an upper boundary for the given key -- hence an iterator referencing
 | 
| 1689 |      * the first element that the given key is less than the referenced value. If
 | 
| 1690 |      * there is no such element, an end-iterator will be returned.
 | 
| 1691 |      */
 | 
| 1692 |     iterator upper_bound(const Key& k, operation_hints& hints) const {
 | 
| 1693 |         if (empty()) {
 | 
| 1694 |             return end();
 | 
| 1695 |         }
 | 
| 1696 | 
 | 
| 1697 |         node* cur = root;
 | 
| 1698 | 
 | 
| 1699 |         auto checkHints = [&](node* last_upper_bound_end) {
 | 
| 1700 |             if (!last_upper_bound_end) return false;
 | 
| 1701 |             if (!coversUpperBound(last_upper_bound_end, k)) return false;
 | 
| 1702 |             cur = last_upper_bound_end;
 | 
| 1703 |             return true;
 | 
| 1704 |         };
 | 
| 1705 | 
 | 
| 1706 |         // test last search node
 | 
| 1707 |         if (hints.last_upper_bound_end.any(checkHints)) {
 | 
| 1708 |             hint_stats.upper_bound.addHit();
 | 
| 1709 |         } else {
 | 
| 1710 |             hint_stats.upper_bound.addMiss();
 | 
| 1711 |         }
 | 
| 1712 | 
 | 
| 1713 |         iterator res = end();
 | 
| 1714 |         while (true) {
 | 
| 1715 |             auto a = &(cur->keys[0]);
 | 
| 1716 |             auto b = &(cur->keys[cur->numElements]);
 | 
| 1717 | 
 | 
| 1718 |             auto pos = search.upper_bound(k, a, b, comp);
 | 
| 1719 |             auto idx = static_cast<field_index_type>(pos - a);
 | 
| 1720 | 
 | 
| 1721 |             if (!cur->inner) {
 | 
| 1722 |                 hints.last_upper_bound_end.access(cur);
 | 
| 1723 |                 return (pos != b) ? iterator(cur, idx) : res;
 | 
| 1724 |             }
 | 
| 1725 | 
 | 
| 1726 |             if (pos != b) {
 | 
| 1727 |                 res = iterator(cur, idx);
 | 
| 1728 |             }
 | 
| 1729 | 
 | 
| 1730 |             cur = cur->getChild(idx);
 | 
| 1731 |         }
 | 
| 1732 |     }
 | 
| 1733 | 
 | 
| 1734 |     /**
 | 
| 1735 |      * Clears this tree.
 | 
| 1736 |      */
 | 
| 1737 |     void clear() {
 | 
| 1738 |         if (root != nullptr) {
 | 
| 1739 |             if (root->isLeaf()) {
 | 
| 1740 |                 delete static_cast<leaf_node*>(root);
 | 
| 1741 |             } else {
 | 
| 1742 |                 delete static_cast<inner_node*>(root);
 | 
| 1743 |             }
 | 
| 1744 |         }
 | 
| 1745 |         root = nullptr;
 | 
| 1746 |         leftmost = nullptr;
 | 
| 1747 |     }
 | 
| 1748 | 
 | 
| 1749 |     /**
 | 
| 1750 |      * Swaps the content of this tree with the given tree. This
 | 
| 1751 |      * is a much more efficient operation than creating a copy and
 | 
| 1752 |      * realizing the swap utilizing assignment operations.
 | 
| 1753 |      */
 | 
| 1754 |     void swap(btree& other) {
 | 
| 1755 |         // swap the content
 | 
| 1756 |         std::swap(root, other.root);
 | 
| 1757 |         std::swap(leftmost, other.leftmost);
 | 
| 1758 |     }
 | 
| 1759 | 
 | 
| 1760 |     // Implementation of the assignment operation for trees.
 | 
| 1761 |     btree& operator=(const btree& other) {
 | 
| 1762 |         // check identity
 | 
| 1763 |         if (this == &other) {
 | 
| 1764 |             return *this;
 | 
| 1765 |         }
 | 
| 1766 | 
 | 
| 1767 |         // create a deep-copy of the content of the other tree
 | 
| 1768 |         // shortcut for empty sets
 | 
| 1769 |         if (other.empty()) {
 | 
| 1770 |             return *this;
 | 
| 1771 |         }
 | 
| 1772 | 
 | 
| 1773 |         // clone content (deep copy)
 | 
| 1774 |         root = other.root->clone();
 | 
| 1775 | 
 | 
| 1776 |         // update leftmost reference
 | 
| 1777 |         auto tmp = root;
 | 
| 1778 |         while (!tmp->isLeaf()) {
 | 
| 1779 |             tmp = tmp->getChild(0);
 | 
| 1780 |         }
 | 
| 1781 |         leftmost = static_cast<leaf_node*>(tmp);
 | 
| 1782 | 
 | 
| 1783 |         // done
 | 
| 1784 |         return *this;
 | 
| 1785 |     }
 | 
| 1786 | 
 | 
| 1787 |     // Implementation of an equality operation for trees.
 | 
| 1788 |     bool operator==(const btree& other) const {
 | 
| 1789 |         // check identity
 | 
| 1790 |         if (this == &other) {
 | 
| 1791 |             return true;
 | 
| 1792 |         }
 | 
| 1793 | 
 | 
| 1794 |         // check size
 | 
| 1795 |         if (size() != other.size()) {
 | 
| 1796 |             return false;
 | 
| 1797 |         }
 | 
| 1798 |         if (size() < other.size()) {
 | 
| 1799 |             return other == *this;
 | 
| 1800 |         }
 | 
| 1801 | 
 | 
| 1802 |         // check content
 | 
| 1803 |         for (const auto& key : other) {
 | 
| 1804 |             if (!contains(key)) {
 | 
| 1805 |                 return false;
 | 
| 1806 |             }
 | 
| 1807 |         }
 | 
| 1808 |         return true;
 | 
| 1809 |     }
 | 
| 1810 | 
 | 
| 1811 |     // Implementation of an inequality operation for trees.
 | 
| 1812 |     bool operator!=(const btree& other) const {
 | 
| 1813 |         return !(*this == other);
 | 
| 1814 |     }
 | 
| 1815 | 
 | 
| 1816 |     // -- for debugging --
 | 
| 1817 | 
 | 
| 1818 |     // Determines the number of levels contained in this tree.
 | 
| 1819 |     size_type getDepth() const {
 | 
| 1820 |         return (empty()) ? 0 : root->getDepth();
 | 
| 1821 |     }
 | 
| 1822 | 
 | 
| 1823 |     // Determines the number of nodes contained in this tree.
 | 
| 1824 |     size_type getNumNodes() const {
 | 
| 1825 |         return (empty()) ? 0 : root->countNodes();
 | 
| 1826 |     }
 | 
| 1827 | 
 | 
| 1828 |     // Determines the amount of memory used by this data structure
 | 
| 1829 |     size_type getMemoryUsage() const {
 | 
| 1830 |         return sizeof(*this) + (empty() ? 0 : root->getMemoryUsage());
 | 
| 1831 |     }
 | 
| 1832 | 
 | 
| 1833 |     /*
 | 
| 1834 |      * Prints a textual representation of this tree to the given
 | 
| 1835 |      * output stream (mostly for debugging and tuning).
 | 
| 1836 |      */
 | 
| 1837 |     void printTree(std::ostream& out = std::cout) const {
 | 
| 1838 |         out << "B-Tree with " << size() << " elements:\n";
 | 
| 1839 |         if (empty()) {
 | 
| 1840 |             out << " - empty - \n";
 | 
| 1841 |         } else {
 | 
| 1842 |             root->printTree(out, "");
 | 
| 1843 |         }
 | 
| 1844 |     }
 | 
| 1845 | 
 | 
| 1846 |     /**
 | 
| 1847 |      * Prints a textual summary of statistical properties of this
 | 
| 1848 |      * tree to the given output stream (for debugging and tuning).
 | 
| 1849 |      */
 | 
| 1850 |     void printStats(std::ostream& out = std::cout) const {
 | 
| 1851 |         auto nodes = getNumNodes();
 | 
| 1852 |         out << " ---------------------------------\n";
 | 
| 1853 |         out << "  Elements: " << size() << "\n";
 | 
| 1854 |         out << "  Depth:    " << (empty() ? 0 : root->getDepth()) << "\n";
 | 
| 1855 |         out << "  Nodes:    " << nodes << "\n";
 | 
| 1856 |         out << " ---------------------------------\n";
 | 
| 1857 |         out << "  Size of inner node: " << sizeof(inner_node) << "\n";
 | 
| 1858 |         out << "  Size of leaf node:  " << sizeof(leaf_node) << "\n";
 | 
| 1859 |         out << "  Size of Key:        " << sizeof(Key) << "\n";
 | 
| 1860 |         out << "  max keys / node:  " << node::maxKeys << "\n";
 | 
| 1861 |         out << "  avg keys / node:  " << (size() / (double)nodes) << "\n";
 | 
| 1862 |         out << "  avg filling rate: " << ((size() / (double)nodes) / node::maxKeys) << "\n";
 | 
| 1863 |         out << " ---------------------------------\n";
 | 
| 1864 |         out << "  insert-hint (hits/misses/total): " << hint_stats.inserts.getHits() << "/"
 | 
| 1865 |             << hint_stats.inserts.getMisses() << "/" << hint_stats.inserts.getAccesses() << "\n";
 | 
| 1866 |         out << "  contains-hint(hits/misses/total):" << hint_stats.contains.getHits() << "/"
 | 
| 1867 |             << hint_stats.contains.getMisses() << "/" << hint_stats.contains.getAccesses() << "\n";
 | 
| 1868 |         out << "  lower-bound-hint (hits/misses/total):" << hint_stats.lower_bound.getHits() << "/"
 | 
| 1869 |             << hint_stats.lower_bound.getMisses() << "/" << hint_stats.lower_bound.getAccesses() << "\n";
 | 
| 1870 |         out << "  upper-bound-hint (hits/misses/total):" << hint_stats.upper_bound.getHits() << "/"
 | 
| 1871 |             << hint_stats.upper_bound.getMisses() << "/" << hint_stats.upper_bound.getAccesses() << "\n";
 | 
| 1872 |         out << " ---------------------------------\n";
 | 
| 1873 |     }
 | 
| 1874 | 
 | 
| 1875 |     /**
 | 
| 1876 |      * Checks the consistency of this tree.
 | 
| 1877 |      */
 | 
| 1878 |     bool check() {
 | 
| 1879 |         auto ok = empty() || root->check(comp, root);
 | 
| 1880 |         if (!ok) {
 | 
| 1881 |             printTree();
 | 
| 1882 |         }
 | 
| 1883 |         return ok;
 | 
| 1884 |     }
 | 
| 1885 | 
 | 
| 1886 |     /**
 | 
| 1887 |      * A static member enabling the bulk-load of ordered data into an empty
 | 
| 1888 |      * tree. This function is much more efficient in creating a index over
 | 
| 1889 |      * an ordered set of elements than an iterative insertion of values.
 | 
| 1890 |      *
 | 
| 1891 |      * @tparam Iter .. the type of iterator specifying the range
 | 
| 1892 |      *                     it must be a random-access iterator
 | 
| 1893 |      */
 | 
| 1894 |     template <typename R, typename Iter>
 | 
| 1895 |     static typename std::enable_if<std::is_same<typename std::iterator_traits<Iter>::iterator_category,
 | 
| 1896 |                                            std::random_access_iterator_tag>::value,
 | 
| 1897 |             R>::type
 | 
| 1898 |     load(const Iter& a, const Iter& b) {
 | 
| 1899 |         // quick exit - empty range
 | 
| 1900 |         if (a == b) {
 | 
| 1901 |             return R();
 | 
| 1902 |         }
 | 
| 1903 | 
 | 
| 1904 |         // resolve tree recursively
 | 
| 1905 |         auto root = buildSubTree(a, b - 1);
 | 
| 1906 | 
 | 
| 1907 |         // find leftmost node
 | 
| 1908 |         node* leftmost = root;
 | 
| 1909 |         while (!leftmost->isLeaf()) {
 | 
| 1910 |             leftmost = leftmost->getChild(0);
 | 
| 1911 |         }
 | 
| 1912 | 
 | 
| 1913 |         // build result
 | 
| 1914 |         return R(b - a, root, static_cast<leaf_node*>(leftmost));
 | 
| 1915 |     }
 | 
| 1916 | 
 | 
| 1917 | protected:
 | 
| 1918 |     /**
 | 
| 1919 |      * Determines whether the range covered by the given node is also
 | 
| 1920 |      * covering the given key value.
 | 
| 1921 |      */
 | 
| 1922 |     bool covers(const node* node, const Key& k) const {
 | 
| 1923 |         if (isSet) {
 | 
| 1924 |             // in sets we can include the ends as covered elements
 | 
| 1925 |             return !node->isEmpty() && !less(k, node->keys[0]) && !less(node->keys[node->numElements - 1], k);
 | 
| 1926 |         }
 | 
| 1927 |         // in multi-sets the ends may not be completely covered
 | 
| 1928 |         return !node->isEmpty() && less(node->keys[0], k) && less(k, node->keys[node->numElements - 1]);
 | 
| 1929 |     }
 | 
| 1930 | 
 | 
| 1931 |     /**
 | 
| 1932 |      * Determines whether the range covered by the given node is also
 | 
| 1933 |      * covering the given key value.
 | 
| 1934 |      */
 | 
| 1935 |     bool weak_covers(const node* node, const Key& k) const {
 | 
| 1936 |         if (isSet) {
 | 
| 1937 |             // in sets we can include the ends as covered elements
 | 
| 1938 |             return !node->isEmpty() && !weak_less(k, node->keys[0]) &&
 | 
| 1939 |                    !weak_less(node->keys[node->numElements - 1], k);
 | 
| 1940 |         }
 | 
| 1941 |         // in multi-sets the ends may not be completely covered
 | 
| 1942 |         return !node->isEmpty() && weak_less(node->keys[0], k) &&
 | 
| 1943 |                weak_less(k, node->keys[node->numElements - 1]);
 | 
| 1944 |     }
 | 
| 1945 | 
 | 
| 1946 | private:
 | 
| 1947 |     /**
 | 
| 1948 |      * Determines whether the range covered by this node covers
 | 
| 1949 |      * the upper bound of the given key.
 | 
| 1950 |      */
 | 
| 1951 |     bool coversUpperBound(const node* node, const Key& k) const {
 | 
| 1952 |         // ignore edges
 | 
| 1953 |         return !node->isEmpty() && !less(k, node->keys[0]) && less(k, node->keys[node->numElements - 1]);
 | 
| 1954 |     }
 | 
| 1955 | 
 | 
| 1956 |     // Utility function for the load operation above.
 | 
| 1957 |     template <typename Iter>
 | 
| 1958 |     static node* buildSubTree(const Iter& a, const Iter& b) {
 | 
| 1959 |         const int N = node::maxKeys;
 | 
| 1960 | 
 | 
| 1961 |         // divide range in N+1 sub-ranges
 | 
| 1962 |         int64_t length = (b - a) + 1;
 | 
| 1963 | 
 | 
| 1964 |         // terminal case: length is less then maxKeys
 | 
| 1965 |         if (length <= N) {
 | 
| 1966 |             // create a leaf node
 | 
| 1967 |             node* res = new leaf_node();
 | 
| 1968 |             res->numElements = length;
 | 
| 1969 | 
 | 
| 1970 |             for (int i = 0; i < length; ++i) {
 | 
| 1971 |                 res->keys[i] = a[i];
 | 
| 1972 |             }
 | 
| 1973 | 
 | 
| 1974 |             return res;
 | 
| 1975 |         }
 | 
| 1976 | 
 | 
| 1977 |         // recursive case - compute step size
 | 
| 1978 |         int numKeys = N;
 | 
| 1979 |         int64_t step = ((length - numKeys) / (numKeys + 1));
 | 
| 1980 | 
 | 
| 1981 |         while (numKeys > 1 && (step < N / 2)) {
 | 
| 1982 |             numKeys--;
 | 
| 1983 |             step = ((length - numKeys) / (numKeys + 1));
 | 
| 1984 |         }
 | 
| 1985 | 
 | 
| 1986 |         // create inner node
 | 
| 1987 |         node* res = new inner_node();
 | 
| 1988 |         res->numElements = numKeys;
 | 
| 1989 | 
 | 
| 1990 |         Iter c = a;
 | 
| 1991 |         for (int i = 0; i < numKeys; i++) {
 | 
| 1992 |             // get dividing key
 | 
| 1993 |             res->keys[i] = c[step];
 | 
| 1994 | 
 | 
| 1995 |             // get sub-tree
 | 
| 1996 |             auto child = buildSubTree(c, c + (step - 1));
 | 
| 1997 |             child->parent = res;
 | 
| 1998 |             child->position = i;
 | 
| 1999 |             res->getChildren()[i] = child;
 | 
| 2000 | 
 | 
| 2001 |             c = c + (step + 1);
 | 
| 2002 |         }
 | 
| 2003 | 
 | 
| 2004 |         // and the remaining part
 | 
| 2005 |         auto child = buildSubTree(c, b);
 | 
| 2006 |         child->parent = res;
 | 
| 2007 |         child->position = numKeys;
 | 
| 2008 |         res->getChildren()[numKeys] = child;
 | 
| 2009 | 
 | 
| 2010 |         // done
 | 
| 2011 |         return res;
 | 
| 2012 |     }
 | 
| 2013 | };  // namespace souffle
 | 
| 2014 | 
 | 
| 2015 | // Instantiation of static member search.
 | 
| 2016 | template <typename Key, typename Comparator, typename Allocator, unsigned blockSize, typename SearchStrategy,
 | 
| 2017 |         bool isSet, typename WeakComparator, typename Updater>
 | 
| 2018 | const SearchStrategy
 | 
| 2019 |         btree<Key, Comparator, Allocator, blockSize, SearchStrategy, isSet, WeakComparator, Updater>::search;
 | 
| 2020 | 
 | 
| 2021 | }  // end namespace detail
 | 
| 2022 | 
 | 
| 2023 | /**
 | 
| 2024 |  * A b-tree based set implementation.
 | 
| 2025 |  *
 | 
| 2026 |  * @tparam Key             .. the element type to be stored in this set
 | 
| 2027 |  * @tparam Comparator     .. a class defining an order on the stored elements
 | 
| 2028 |  * @tparam Allocator     .. utilized for allocating memory for required nodes
 | 
| 2029 |  * @tparam blockSize    .. determines the number of bytes/block utilized by leaf nodes
 | 
| 2030 |  * @tparam SearchStrategy .. enables switching between linear, binary or any other search strategy
 | 
| 2031 |  */
 | 
| 2032 | template <typename Key, typename Comparator = detail::comparator<Key>,
 | 
| 2033 |         typename Allocator = std::allocator<Key>,  // is ignored so far
 | 
| 2034 |         unsigned blockSize = 256,
 | 
| 2035 |         typename SearchStrategy = typename souffle::detail::default_strategy<Key>::type,
 | 
| 2036 |         typename WeakComparator = Comparator, typename Updater = souffle::detail::updater<Key>>
 | 
| 2037 | class btree_set : public souffle::detail::btree<Key, Comparator, Allocator, blockSize, SearchStrategy, true,
 | 
| 2038 |                           WeakComparator, Updater> {
 | 
| 2039 |     using super = souffle::detail::btree<Key, Comparator, Allocator, blockSize, SearchStrategy, true,
 | 
| 2040 |             WeakComparator, Updater>;
 | 
| 2041 | 
 | 
| 2042 |     friend class souffle::detail::btree<Key, Comparator, Allocator, blockSize, SearchStrategy, true,
 | 
| 2043 |             WeakComparator, Updater>;
 | 
| 2044 | 
 | 
| 2045 | public:
 | 
| 2046 |     /**
 | 
| 2047 |      * A default constructor creating an empty set.
 | 
| 2048 |      */
 | 
| 2049 |     btree_set(const Comparator& comp = Comparator(), const WeakComparator& weak_comp = WeakComparator())
 | 
| 2050 |             : super(comp, weak_comp) {}
 | 
| 2051 | 
 | 
| 2052 |     /**
 | 
| 2053 |      * A constructor creating a set based on the given range.
 | 
| 2054 |      */
 | 
| 2055 |     template <typename Iter>
 | 
| 2056 |     btree_set(const Iter& a, const Iter& b) {
 | 
| 2057 |         this->insert(a, b);
 | 
| 2058 |     }
 | 
| 2059 | 
 | 
| 2060 |     // A copy constructor.
 | 
| 2061 |     btree_set(const btree_set& other) : super(other) {}
 | 
| 2062 | 
 | 
| 2063 |     // A move constructor.
 | 
| 2064 |     btree_set(btree_set&& other) : super(std::move(other)) {}
 | 
| 2065 | 
 | 
| 2066 | private:
 | 
| 2067 |     // A constructor required by the bulk-load facility.
 | 
| 2068 |     template <typename s, typename n, typename l>
 | 
| 2069 |     btree_set(s size, n* root, l* leftmost) : super(size, root, leftmost) {}
 | 
| 2070 | 
 | 
| 2071 | public:
 | 
| 2072 |     // Support for the assignment operator.
 | 
| 2073 |     btree_set& operator=(const btree_set& other) {
 | 
| 2074 |         super::operator=(other);
 | 
| 2075 |         return *this;
 | 
| 2076 |     }
 | 
| 2077 | 
 | 
| 2078 |     // Support for the bulk-load operator.
 | 
| 2079 |     template <typename Iter>
 | 
| 2080 |     static btree_set load(const Iter& a, const Iter& b) {
 | 
| 2081 |         return super::template load<btree_set>(a, b);
 | 
| 2082 |     }
 | 
| 2083 | };
 | 
| 2084 | 
 | 
| 2085 | /**
 | 
| 2086 |  * A b-tree based multi-set implementation.
 | 
| 2087 |  *
 | 
| 2088 |  * @tparam Key             .. the element type to be stored in this set
 | 
| 2089 |  * @tparam Comparator     .. a class defining an order on the stored elements
 | 
| 2090 |  * @tparam Allocator     .. utilized for allocating memory for required nodes
 | 
| 2091 |  * @tparam blockSize    .. determines the number of bytes/block utilized by leaf nodes
 | 
| 2092 |  * @tparam SearchStrategy .. enables switching between linear, binary or any other search strategy
 | 
| 2093 |  */
 | 
| 2094 | template <typename Key, typename Comparator = detail::comparator<Key>,
 | 
| 2095 |         typename Allocator = std::allocator<Key>,  // is ignored so far
 | 
| 2096 |         unsigned blockSize = 256,
 | 
| 2097 |         typename SearchStrategy = typename souffle::detail::default_strategy<Key>::type,
 | 
| 2098 |         typename WeakComparator = Comparator, typename Updater = souffle::detail::updater<Key>>
 | 
| 2099 | class btree_multiset : public souffle::detail::btree<Key, Comparator, Allocator, blockSize, SearchStrategy,
 | 
| 2100 |                                false, WeakComparator, Updater> {
 | 
| 2101 |     using super = souffle::detail::btree<Key, Comparator, Allocator, blockSize, SearchStrategy, false,
 | 
| 2102 |             WeakComparator, Updater>;
 | 
| 2103 | 
 | 
| 2104 |     friend class souffle::detail::btree<Key, Comparator, Allocator, blockSize, SearchStrategy, false,
 | 
| 2105 |             WeakComparator, Updater>;
 | 
| 2106 | 
 | 
| 2107 | public:
 | 
| 2108 |     /**
 | 
| 2109 |      * A default constructor creating an empty set.
 | 
| 2110 |      */
 | 
| 2111 |     btree_multiset(const Comparator& comp = Comparator(), const WeakComparator& weak_comp = WeakComparator())
 | 
| 2112 |             : super(comp, weak_comp) {}
 | 
| 2113 | 
 | 
| 2114 |     /**
 | 
| 2115 |      * A constructor creating a set based on the given range.
 | 
| 2116 |      */
 | 
| 2117 |     template <typename Iter>
 | 
| 2118 |     btree_multiset(const Iter& a, const Iter& b) {
 | 
| 2119 |         this->insert(a, b);
 | 
| 2120 |     }
 | 
| 2121 | 
 | 
| 2122 |     // A copy constructor.
 | 
| 2123 |     btree_multiset(const btree_multiset& other) : super(other) {}
 | 
| 2124 | 
 | 
| 2125 |     // A move constructor.
 | 
| 2126 |     btree_multiset(btree_multiset&& other) : super(std::move(other)) {}
 | 
| 2127 | 
 | 
| 2128 | private:
 | 
| 2129 |     // A constructor required by the bulk-load facility.
 | 
| 2130 |     template <typename s, typename n, typename l>
 | 
| 2131 |     btree_multiset(s size, n* root, l* leftmost) : super(size, root, leftmost) {}
 | 
| 2132 | 
 | 
| 2133 | public:
 | 
| 2134 |     // Support for the assignment operator.
 | 
| 2135 |     btree_multiset& operator=(const btree_multiset& other) {
 | 
| 2136 |         super::operator=(other);
 | 
| 2137 |         return *this;
 | 
| 2138 |     }
 | 
| 2139 | 
 | 
| 2140 |     // Support for the bulk-load operator.
 | 
| 2141 |     template <typename Iter>
 | 
| 2142 |     static btree_multiset load(const Iter& a, const Iter& b) {
 | 
| 2143 |         return super::template load<btree_multiset>(a, b);
 | 
| 2144 |     }
 | 
| 2145 | };
 | 
| 2146 | 
 | 
| 2147 | }  // end of namespace souffle
 |