1 | #include <errno.h> // errno
|
2 | #include <float.h> // DBL_MIN, DBL_MAX
|
3 | #include <math.h> // INFINITY
|
4 | #include <stdio.h> // required for readline/readline.h (man readline)
|
5 |
|
6 | #include "_build/detected-cpp-config.h"
|
7 | #include "mycpp/runtime.h"
|
8 | #ifdef HAVE_READLINE
|
9 | #include "cpp/frontend_pyreadline.h"
|
10 | #endif
|
11 |
|
12 | // Translation of Python's print().
|
13 | void print(BigStr* s) {
|
14 | fputs(s->data_, stdout); // print until first NUL
|
15 | fputc('\n', stdout);
|
16 | }
|
17 |
|
18 | BigStr* str(int i) {
|
19 | BigStr* s = OverAllocatedStr(kIntBufSize);
|
20 | int length = snprintf(s->data(), kIntBufSize, "%d", i);
|
21 | s->MaybeShrink(length);
|
22 | return s;
|
23 | }
|
24 |
|
25 | // TODO:
|
26 | // - This could use a fancy exact algorithm, not libc
|
27 | // - Does libc depend on locale?
|
28 | BigStr* str(double d) {
|
29 | char buf[64]; // overestimate, but we use snprintf() to be safe
|
30 |
|
31 | // Problem:
|
32 | // %f prints 3.0000000 and 3.500000
|
33 | // %g prints 3 and 3.5
|
34 | //
|
35 | // We want literal syntax to indicate float, so add '.'
|
36 |
|
37 | int n = sizeof(buf) - 2; // in case we add '.0'
|
38 |
|
39 | // %.9g digits for string that can be converted back to the same FLOAT
|
40 | // (not double)
|
41 | // https://stackoverflow.com/a/21162120
|
42 | // https://en.cppreference.com/w/cpp/types/numeric_limits/max_digits10
|
43 | int length = snprintf(buf, n, "%.9g", d);
|
44 |
|
45 | // %a is a hexfloat form, could use that somewhere
|
46 | // int length = snprintf(buf, n, "%a", d);
|
47 |
|
48 | if (strchr(buf, 'i')) { // inf or -inf
|
49 | return StrFromC(buf);
|
50 | }
|
51 |
|
52 | if (!strchr(buf, '.')) { // 12345 -> 12345.0
|
53 | buf[length] = '.';
|
54 | buf[length + 1] = '0';
|
55 | buf[length + 2] = '\0';
|
56 | }
|
57 |
|
58 | return StrFromC(buf);
|
59 | }
|
60 |
|
61 | // Do we need this API? Or is mylib.InternedStr(BigStr* s, int start, int end)
|
62 | // better for getting values out of Token.line without allocating?
|
63 | //
|
64 | // e.g. mylib.InternedStr(tok.line, tok.start, tok.start+1)
|
65 | //
|
66 | // Also for SmallStr, we don't care about interning. Only for HeapStr.
|
67 |
|
68 | BigStr* intern(BigStr* s) {
|
69 | // TODO: put in table gHeap.interned_
|
70 | return s;
|
71 | }
|
72 |
|
73 | // Print quoted string. Called by StrFormat('%r').
|
74 | // TODO: consider using J8 notation instead, since error messages show that
|
75 | // string.
|
76 | BigStr* repr(BigStr* s) {
|
77 | // Worst case: \0 becomes 4 bytes as '\\x00', and then two quote bytes.
|
78 | int n = len(s);
|
79 | int upper_bound = n * 4 + 2;
|
80 |
|
81 | BigStr* result = OverAllocatedStr(upper_bound);
|
82 |
|
83 | // Single quote by default.
|
84 | char quote = '\'';
|
85 | if (memchr(s->data_, '\'', n) && !memchr(s->data_, '"', n)) {
|
86 | quote = '"';
|
87 | }
|
88 | char* p = result->data_;
|
89 |
|
90 | // From PyString_Repr()
|
91 | *p++ = quote;
|
92 | for (int i = 0; i < n; ++i) {
|
93 | unsigned char c = static_cast<unsigned char>(s->data_[i]);
|
94 | if (c == quote || c == '\\') {
|
95 | *p++ = '\\';
|
96 | *p++ = c;
|
97 | } else if (c == '\t') {
|
98 | *p++ = '\\';
|
99 | *p++ = 't';
|
100 | } else if (c == '\n') {
|
101 | *p++ = '\\';
|
102 | *p++ = 'n';
|
103 | } else if (c == '\r') {
|
104 | *p++ = '\\';
|
105 | *p++ = 'r';
|
106 | } else if (0x20 <= c && c < 0x80) {
|
107 | *p++ = c;
|
108 | } else {
|
109 | // Unprintable becomes \xff.
|
110 | // TODO: Consider \yff. This is similar to J8 strings, but we don't
|
111 | // decode UTF-8.
|
112 | sprintf(p, "\\x%02x", c & 0xff);
|
113 | p += 4;
|
114 | }
|
115 | }
|
116 | *p++ = quote;
|
117 | *p = '\0';
|
118 |
|
119 | int length = p - result->data_;
|
120 | result->MaybeShrink(length);
|
121 | return result;
|
122 | }
|
123 |
|
124 | // Helper functions that don't use exceptions.
|
125 |
|
126 | bool StringToInt(const char* s, int length, int base, int* result) {
|
127 | if (length == 0) {
|
128 | return false; // empty string isn't a valid integer
|
129 | }
|
130 |
|
131 | // Note: sizeof(int) is often 4 bytes on both 32-bit and 64-bit
|
132 | // sizeof(long) is often 4 bytes on both 32-bit but 8 bytes on 64-bit
|
133 | // static_assert(sizeof(long) == 8);
|
134 |
|
135 | char* pos; // mutated by strtol
|
136 |
|
137 | errno = 0;
|
138 | long v = strtol(s, &pos, base);
|
139 |
|
140 | if (errno == ERANGE) {
|
141 | switch (v) {
|
142 | case LONG_MIN:
|
143 | return false; // underflow of long, which may be 64 bits
|
144 | case LONG_MAX:
|
145 | return false; // overflow of long
|
146 | }
|
147 | }
|
148 |
|
149 | // It should ALSO fit in an int, not just a long
|
150 | if (v > INT_MAX) {
|
151 | return false;
|
152 | }
|
153 | if (v < INT_MIN) {
|
154 | return false;
|
155 | }
|
156 |
|
157 | const char* end = s + length;
|
158 | if (pos == end) {
|
159 | *result = v;
|
160 | return true; // strtol() consumed ALL characters.
|
161 | }
|
162 |
|
163 | while (pos < end) {
|
164 | if (!IsAsciiWhitespace(*pos)) {
|
165 | return false; // Trailing non-space
|
166 | }
|
167 | pos++;
|
168 | }
|
169 |
|
170 | *result = v;
|
171 | return true; // Trailing space is OK
|
172 | }
|
173 |
|
174 | bool StringToInt64(const char* s, int length, int base, int64_t* result) {
|
175 | if (length == 0) {
|
176 | return false; // empty string isn't a valid integer
|
177 | }
|
178 |
|
179 | // These should be the same type
|
180 | static_assert(sizeof(long long) == sizeof(int64_t));
|
181 |
|
182 | char* pos; // mutated by strtol
|
183 |
|
184 | errno = 0;
|
185 | long long v = strtoll(s, &pos, base);
|
186 |
|
187 | if (errno == ERANGE) {
|
188 | switch (v) {
|
189 | case LLONG_MIN:
|
190 | return false; // underflow
|
191 | case LLONG_MAX:
|
192 | return false; // overflow
|
193 | }
|
194 | }
|
195 |
|
196 | const char* end = s + length;
|
197 | if (pos == end) {
|
198 | *result = v;
|
199 | return true; // strtol() consumed ALL characters.
|
200 | }
|
201 |
|
202 | while (pos < end) {
|
203 | if (!IsAsciiWhitespace(*pos)) {
|
204 | return false; // Trailing non-space
|
205 | }
|
206 | pos++;
|
207 | }
|
208 |
|
209 | *result = v;
|
210 | return true; // Trailing space is OK
|
211 | }
|
212 |
|
213 | int to_int(BigStr* s, int base) {
|
214 | int i;
|
215 | if (StringToInt(s->data_, len(s), base, &i)) {
|
216 | return i; // truncated to int
|
217 | } else {
|
218 | throw Alloc<ValueError>();
|
219 | }
|
220 | }
|
221 |
|
222 | BigStr* chr(int i) {
|
223 | // NOTE: i should be less than 256, in which we could return an object from
|
224 | // GLOBAL_STR() pool, like StrIter
|
225 | auto result = NewStr(1);
|
226 | result->data_[0] = i;
|
227 | return result;
|
228 | }
|
229 |
|
230 | int ord(BigStr* s) {
|
231 | assert(len(s) == 1);
|
232 | // signed to unsigned conversion, so we don't get values like -127
|
233 | uint8_t c = static_cast<uint8_t>(s->data_[0]);
|
234 | return c;
|
235 | }
|
236 |
|
237 | bool to_bool(BigStr* s) {
|
238 | return len(s) != 0;
|
239 | }
|
240 |
|
241 | double to_float(int i) {
|
242 | return static_cast<double>(i);
|
243 | }
|
244 |
|
245 | double to_float(BigStr* s) {
|
246 | char* begin = s->data_;
|
247 | char* end = begin + len(s);
|
248 |
|
249 | errno = 0;
|
250 | double result = strtod(begin, &end);
|
251 |
|
252 | if (errno == ERANGE) { // error: overflow or underflow
|
253 | if (result >= HUGE_VAL) {
|
254 | return INFINITY;
|
255 | } else if (result <= -HUGE_VAL) {
|
256 | return -INFINITY;
|
257 | } else if (-DBL_MIN <= result && result <= DBL_MIN) {
|
258 | return 0.0;
|
259 | } else {
|
260 | FAIL("Invalid value after ERANGE");
|
261 | }
|
262 | }
|
263 | if (end == begin) { // error: not a floating point number
|
264 | throw Alloc<ValueError>();
|
265 | }
|
266 |
|
267 | return result;
|
268 | }
|
269 |
|
270 | // e.g. ('a' in 'abc')
|
271 | bool str_contains(BigStr* haystack, BigStr* needle) {
|
272 | // Common case
|
273 | if (len(needle) == 1) {
|
274 | return memchr(haystack->data_, needle->data_[0], len(haystack));
|
275 | }
|
276 |
|
277 | if (len(needle) > len(haystack)) {
|
278 | return false;
|
279 | }
|
280 |
|
281 | // General case. TODO: We could use a smarter substring algorithm.
|
282 |
|
283 | const char* end = haystack->data_ + len(haystack);
|
284 | const char* last_possible = end - len(needle);
|
285 | const char* p = haystack->data_;
|
286 |
|
287 | while (p <= last_possible) {
|
288 | if (memcmp(p, needle->data_, len(needle)) == 0) {
|
289 | return true;
|
290 | }
|
291 | p++;
|
292 | }
|
293 | return false;
|
294 | }
|
295 |
|
296 | BigStr* str_repeat(BigStr* s, int times) {
|
297 | // Python allows -1 too, and Oil used that
|
298 | if (times <= 0) {
|
299 | return kEmptyString;
|
300 | }
|
301 | int len_ = len(s);
|
302 | int new_len = len_ * times;
|
303 | BigStr* result = NewStr(new_len);
|
304 |
|
305 | char* dest = result->data_;
|
306 | for (int i = 0; i < times; i++) {
|
307 | memcpy(dest, s->data_, len_);
|
308 | dest += len_;
|
309 | }
|
310 | return result;
|
311 | }
|
312 |
|
313 | // for os_path.join()
|
314 | // NOTE(Jesse): Perfect candidate for BoundedBuffer
|
315 | BigStr* str_concat3(BigStr* a, BigStr* b, BigStr* c) {
|
316 | int a_len = len(a);
|
317 | int b_len = len(b);
|
318 | int c_len = len(c);
|
319 |
|
320 | int new_len = a_len + b_len + c_len;
|
321 | BigStr* result = NewStr(new_len);
|
322 | char* pos = result->data_;
|
323 |
|
324 | memcpy(pos, a->data_, a_len);
|
325 | pos += a_len;
|
326 |
|
327 | memcpy(pos, b->data_, b_len);
|
328 | pos += b_len;
|
329 |
|
330 | memcpy(pos, c->data_, c_len);
|
331 |
|
332 | assert(pos + c_len == result->data_ + new_len);
|
333 |
|
334 | return result;
|
335 | }
|
336 |
|
337 | BigStr* str_concat(BigStr* a, BigStr* b) {
|
338 | int a_len = len(a);
|
339 | int b_len = len(b);
|
340 | int new_len = a_len + b_len;
|
341 | BigStr* result = NewStr(new_len);
|
342 | char* buf = result->data_;
|
343 |
|
344 | memcpy(buf, a->data_, a_len);
|
345 | memcpy(buf + a_len, b->data_, b_len);
|
346 |
|
347 | return result;
|
348 | }
|
349 |
|
350 | //
|
351 | // Comparators
|
352 | //
|
353 |
|
354 | bool str_equals(BigStr* left, BigStr* right) {
|
355 | // Fast path for identical strings. String deduplication during GC could
|
356 | // make this more likely. String interning could guarantee it, allowing us
|
357 | // to remove memcmp().
|
358 | if (left == right) {
|
359 | return true;
|
360 | }
|
361 |
|
362 | if (left == nullptr || right == nullptr) {
|
363 | return false;
|
364 | }
|
365 |
|
366 | // obj_len equal implies string lengths are equal
|
367 |
|
368 | if (left->len_ == right->len_) {
|
369 | // assert(len(left) == len(right));
|
370 | return memcmp(left->data_, right->data_, left->len_) == 0;
|
371 | }
|
372 |
|
373 | return false;
|
374 | }
|
375 |
|
376 | bool maybe_str_equals(BigStr* left, BigStr* right) {
|
377 | if (left && right) {
|
378 | return str_equals(left, right);
|
379 | }
|
380 |
|
381 | if (!left && !right) {
|
382 | return true; // None == None
|
383 | }
|
384 |
|
385 | return false; // one is None and one is a BigStr*
|
386 | }
|
387 |
|
388 | // TODO: inline these functions?
|
389 | bool are_equal(int left, int right) {
|
390 | return left == right;
|
391 | }
|
392 |
|
393 | bool keys_equal(int left, int right) {
|
394 | return left == right;
|
395 | }
|
396 |
|
397 | bool are_equal(BigStr* left, BigStr* right) {
|
398 | return str_equals(left, right);
|
399 | }
|
400 |
|
401 | bool keys_equal(BigStr* left, BigStr* right) {
|
402 | return are_equal(left, right);
|
403 | }
|
404 |
|
405 | // Shouldn't be used?
|
406 | bool are_equal(void* left, void* right) {
|
407 | assert(0);
|
408 | }
|
409 |
|
410 | // e.g. for Dict<Token*, int>, use object IDENTITY, not value
|
411 | bool keys_equal(void* left, void* right) {
|
412 | return left == right;
|
413 | }
|
414 |
|
415 | bool are_equal(Tuple2<BigStr*, int>* t1, Tuple2<BigStr*, int>* t2) {
|
416 | bool result = are_equal(t1->at0(), t2->at0());
|
417 | result = result && (t1->at1() == t2->at1());
|
418 | return result;
|
419 | }
|
420 |
|
421 | bool are_equal(Tuple2<int, int>* t1, Tuple2<int, int>* t2) {
|
422 | return t1->at0() == t2->at0() && t1->at1() == t2->at1();
|
423 | }
|
424 |
|
425 | bool keys_equal(Tuple2<int, int>* t1, Tuple2<int, int>* t2) {
|
426 | return are_equal(t1, t2);
|
427 | }
|
428 |
|
429 | bool keys_equal(Tuple2<BigStr*, int>* t1, Tuple2<BigStr*, int>* t2) {
|
430 | return are_equal(t1, t2);
|
431 | }
|
432 |
|
433 | bool str_equals_c(BigStr* s, const char* c_string, int c_len) {
|
434 | // Needs SmallStr change
|
435 | if (len(s) == c_len) {
|
436 | return memcmp(s->data_, c_string, c_len) == 0;
|
437 | } else {
|
438 | return false;
|
439 | }
|
440 | }
|
441 |
|
442 | bool str_equals0(const char* c_string, BigStr* s) {
|
443 | int n = strlen(c_string);
|
444 | if (len(s) == n) {
|
445 | return memcmp(s->data_, c_string, n) == 0;
|
446 | } else {
|
447 | return false;
|
448 | }
|
449 | }
|
450 |
|
451 | int hash(BigStr* s) {
|
452 | return s->hash(fnv1);
|
453 | }
|
454 |
|
455 | int max(int a, int b) {
|
456 | return std::max(a, b);
|
457 | }
|
458 |
|
459 | int min(int a, int b) {
|
460 | return std::min(a, b);
|
461 | }
|
462 |
|
463 | int max(List<int>* elems) {
|
464 | int n = len(elems);
|
465 | if (n < 1) {
|
466 | throw Alloc<ValueError>();
|
467 | }
|
468 |
|
469 | int ret = elems->at(0);
|
470 | for (int i = 0; i < n; ++i) {
|
471 | int cand = elems->at(i);
|
472 | if (cand > ret) {
|
473 | ret = cand;
|
474 | }
|
475 | }
|
476 |
|
477 | return ret;
|
478 | }
|